Edexcel Maths C2

Topic Questions from Papers

Exponentials and Logarithms

Leave
blank

(a) $5^x = 8$, giving your answer to 3 significant figures,

(3)

(b) $\log_2(x+1) - \log_2 x = \log_2 7$.

(3)

(ii) Express 2 log _a 3 + log _a 11 as a single logarithm to base a. (3)	(i) Write down the value of log ₆ 36.	(1)
	(ii) Express $2 \log_a 3 + \log_a 11$ as a single logarithm to base a .	(3)

$5^x = 17,$	
giving your answer to 3 significant figures.	(3)

blank

6.	(a)	Find, to 3 s	significant	figures,	the value	of x for	which	8 ^x	= 0.8.
•	(4)	1 1110, 10 5 5	751111104111	1150100,	tire tarac	01 77 101	********	•	0.0.

(2)

(b) Solve the equation

$$2\log_3 x - \log_3 7x = 1.$$

(4)

	(-)

a = 2k	
a=3b,	
$\log_3 a + \log_3 b = 2.$	
Give your answers as exact numbers.	
	(6)

4. (a) Find, to 3 significant figures, the value of \mathbf{x} for which $5^{\mathbf{x}} = 7$.	(2)
(b) Solve the equation $5^{2x} - 12(5^x) + 35 = 0$.	(-)
(b) Solve the equation $3 - 12(3) + 33 = 0$.	(4)

Given that $0 < x < 4$ and	1 (4) 21	
find the value of x .	$\log_5(4-x) - 2\log_5 x = 1,$	
inia the value of M.		(6)

8. (a) Find the value of y suc	n that
---------------------------------------	--------

$$\log_2 y = -3$$

(2)

$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x$$

(5)

(a) Find the positive v	value of x such that	
, Passage	$\log_x 64 = 2$	(2)
(b) Solve for <i>x</i>		
	$\log_2(11 - 6x) = 2\log_2(x - 1) + 3$	(6)

7. (a) Given that	7.	(a)	Given	tha
--------------------------	----	-----	-------	-----

$$2\log_3(\mathbf{x}-5) - \log_3(2\mathbf{x}-13) = 1$$
,

show that $x^2 - 16x + 64 = 0$.

(5)

			_				
(b) Hence.	or otherwise,	solve	$2\log_{2}(\mathbf{x} -$	$5) - \log_2$	(2x-13)=1	١.

(2)

8. (a) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.

(2)

(b) Solve the equation

$$7^{2x} - 4(7^x) + 3 = 0$$

giving your answers to 2 decimal places where appropriate.

(6)

3. Find, giving your answer to 3 significant figures where appropriate, the value of x for which

(a) $5^x = 10$,

(2)

(b) $\log_3(x-2) = -1$.

(2)

$3x^2$,
	$3x^2$

(a) show that $\log_3 y = 1 + 2 \log_3 x$

(3)

(b) Hence, or otherwise, solve the equation

$$1 + 2\log_3 x = \log_3(28x - 9)$$

(3)

	(5)	
		(3)

6.	Given	that

$$2\log_2(x+15) - \log_2 x = 6$$

(a) Show that

$$x^2 - 34x + 225 = 0$$

(5)

(b) Hence, or otherwise, solve the equation

$$2\log_2(x+15) - \log_2 x = 6$$

(2)

- **6.** Given that $\log_3 x = a$, find in terms of a,
 - (a) $\log_3(9x)$

(2)

(b) $\log_3\left(\frac{x^5}{81}\right)$

(3)

giving each answer in its simplest form.

(c) Solve, for x,

$$\log_3(9x) + \log_3\left(\frac{x^5}{81}\right) = 3$$

giving your answer to 4 significant figures.

(4)

Question 6 continued	

Leave	
blank	

7.	(i)	Find the	exact	value	of x	for	which
/ •	(1)	I ma mc	CAuct	varue	$or \lambda$	101	WILL

$$\log_2(2x) = \log_2(5x + 4) - 3$$

(4)

(ii) Given that

$$\log_a y + 3\log_a 2 = 5$$

express y in terms of a.

Give your answer in its simplest form.

(3)

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$