Edexcel Maths C2

Topic Questions from Papers

Algebra & Functions

Leave	
blank	

	(a)	Use the factor theorem to show that $(x + 4)$ is a factor of $2x^3 + x^2 - 25x + 12$.	(2)
	(b)	Factorise $2x^3 + x^2 - 25x + 12$ completely.	(4)
_			

$f(x) = 2x^3 + x$	$c^2 - 5x + c$, where c is a constant.	
Given that $f(1) = 0$,		
(a) find the value of c ,		(2)
(b) factorise $f(x)$ completely,		(4)
(c) find the remainder when $f(x)$ is	s divided by $(2x - 3)$.	(2)

1	
4	

 $f(x) = 2x^3 + 3x^2 - 29x - 60.$

(a) Find the remainder when f(x) is divided by (x + 2).

(2)

(b) Use the factor theorem to show that (x + 3) is a factor of f(x).

(2)

(c) Factorise f(x) completely.

(4)

5.	$f(x) = x^3 + 4x^2 + x - 6$
5.	$f(x) = x^3 + 4x^2 + x - 6$

(a) Use the factor theorem to show that (x + 2) is a factor of f(x).

(2)

(b) Factorise f(x) completely.

(4)

(c) Write down all the solutions to the equation

$$x^3 + 4x^2 + x - 6 = 0$$
.

(1)

2.

$$f(x) = 3x^3 - 5x^2 - 16x + 12.$$

(a) Find the remainder when f(x) is divided by (x - 2).

(2)

Given that (x + 2) is a factor of f(x),

(b) factorise f(x) completely.

(4)

Q2

(Total 6 marks)

1. (a) Find the remainder when

$$x^3 - 2x^2 - 4x + 8$$

is divided by

- (i) x 3,
- (ii) x + 2.

(3)

(b) Hence, or otherwise, find all the solutions to the equation

$$x^3 - 2x^2 - 4x + 8 = 0.$$

(4)

Leav	e
hlan	k

$f(x) = 2x^3 - 3x^2 - 39x + 20$	
(a) Use the factor theorem to show that $(x + 4)$ is a factor	or of $f(x)$. (2)
(b) Factorise f (x) completely.	(4)

-	
6	
v	

$$f(x) = x^4 + 5x^3 + ax + b$$
,

where a and b are constants.

The remainder when f(x) is divided by (x - 2) is equal to the remainder when f(x) is divided by (x + 1).

(a) Find the value of a.

(5)

Given that (x + 3) is a factor of f(x),

(b) find the value of b.

(3)

3.	$f(\mathbf{x}) = (3\mathbf{x} - 2)(\mathbf{x} - \mathbf{k}) - 8$

where \mathbf{k} is a constant.

(a) Write down the value of $f(\mathbf{k})$.

(1)

When f(x) is divided by (x-2) the remainder is 4

(b) Find the value of k.

(2)

(a)	Lostonica	f (**)	001001	12421	
(()	Factorise	1 (X)	COIIII	петег	·V
(-)	I according	1 (11)	00111	,1000	·. 7

(3)

ć	1	
ล	n	

3.	$f(x) = 2x^3 + ax^2 + bx - 6$	
	where a and b are constants. When $f(x)$ is divided by $(2x - 1)$ the remainder is -5 . When $f(x)$ is divided by $(x + 2)$ there is no remainder.	
	(a) Find the value of a and the value of b. (6)	
	(b) Factorise $f(x)$ completely. (3)	

~	
	٠.

$$f(\mathbf{x}) = 3\mathbf{x}^3 - 5\mathbf{x}^2 - 58\mathbf{x} + 40$$

(a) Find the remainder when f(x) is divided by (x-3).

(2)

June 2010

Given that (x-5) is a factor of f(x),

(b) find all the solutions of f(x) = 0.

(5)

1. $f(x) = x^4 + x^3 + 2x^2 + ax + a$

where a and b are constants.

When f(x) is divided by (x - 1), the remainder is 7.

(a) Show that a + b = 3.

(2)

When f(x) is divided by (x + 2), the remainder is -8.

(b) Find the value of a and the value of b.

(5)

1.	$f(x) = 2x^3 - 7x^2 - 5x + 4$	
	(a) Find the remainder when $f(x)$ is divided by $(x-1)$.	(2)
	(b) Use the factor theorem to show that $(x+1)$ is a factor of $f(x)$.	(2)
	(c) Factorise $f(x)$ completely.	(4)

5.	$f(x) = x^3 + ax^2 + bx + 3$,	where a and b are constants.
----	--------------------------------	----------------------------------

Given that when f(x) is divided by (x+2) the remainder is 7,

(a) show that 2a - b = 6

(2)

Given also that when f(x) is divided by (x-1) the remainder is 4,

(b) find the value of a and the value of b.

(4)

Leave	
blank	

	$f(x) = 2x^3 - 7x^2 - 10x + 24$	
(a)	Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$.	(2)
(b)	Factorise $f(x)$ completely.	(4)

		Leav
2.	$f(x) = ax^3 + bx^2 - 4x - 3$, where a and b are constants.	
	Given that $(x - 1)$ is a factor of $f(x)$,	
	(a) show that $a + b = 7$ (2)	
	Given also that, when $f(x)$ is divided by $(x + 2)$, the remainder is 9,	
	(b) find the value of a and the value of b , showing each step in your working. (4)	

$f(x) = ax^3 - 11x^2 + bx + 4, \text{ where } a \text{ and } b \text{ are constants.}$	
When $f(x)$ is divided by $(x - 3)$ the remainder is 55	
When $f(x)$ is divided by $(x + 1)$ the remainder is -9	
(a) Find the value of a and the value of b.	(5)
Given that $(3x + 2)$ is a factor of $f(x)$,	
(b) factorise $f(x)$ completely.	(4)

3.	$f(x) = 2x^3 - 5x^2 + ax + 18$
	()

where a is a constant.

Given that (x - 3) is a factor of f(x),

(a) show that a = -9

(2)

(b) factorise f(x) completely.

(4)

Given that

$$g(y) = 2(3^{3y}) - 5(3^{2y}) - 9(3^y) + 18$$

(c) find the values of y that satisfy g(y) = 0, giving your answers to 2 decimal places where appropriate.

(3)

estion 3 continued	

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$