Radian measure and its applications Exercise A, Question 1

Question:

Convert the following angles in radians to degrees:

(a) $\frac{\pi}{20}$
(b) $\frac{\pi}{15}$
(c) $\frac{5\pi}{12}$
(d) $\frac{\pi}{2}$
(e) $\frac{7\pi}{9}$
(f) $\frac{7\pi}{6}$
(g) $\frac{5\pi}{4}$
(h) $\frac{3\pi}{2}$
(i) 3 <i>π</i>
Solution:
(a) $\frac{\pi}{20}$ rad = $\frac{180^{\circ}}{20}$ = 9 °
(b) $\frac{\pi}{15}$ rad = $\frac{180^{\circ}}{15}$ = 12 °
(c) $\frac{5\pi}{12}$ rad = $\frac{15^{\circ}}{5 \times 180^{\circ}}$ = 75 °
(d) $\frac{\pi}{2}$ rad = $\frac{180^{\circ}}{2} = 90^{\circ}$
(e) $\frac{7\pi}{9}$ rad = $\frac{20^{\circ}}{7 \times 180^{\circ}}$ = 140 °

PhysicsAndMathsTutor.com

(f)
$$\frac{7\pi}{6}$$
 rad = $\frac{30^{\circ}}{7 \times 180^{\circ}}$ = 210 °
(g) $\frac{5\pi}{4}$ rad = $\frac{5 \times 180^{\circ}}{4}$ = 225 °
(h) $\frac{3\pi}{2}$ rad = $3 \times 90^{\circ}$ = 270 °

(i) 3π rad = $3 \times 180^{\circ}$ = 540 °

Radian measure and its applications Exercise A, Question 2

Question:

Use your calculator to convert the following angles to degrees, giving your answer to the nearest 0.1 $^\circ$:

- (a) 0.46^c
- (b) 1^c
- (c) 1.135^c
- (d) $\sqrt{3^c}$
- (e) 2.5^c
- (f) 3.14^c
- (g) 3.49^c

Solution:

(a) $0.46^{\circ} = 26.356$ $^{\circ} = 26.4^{\circ}$ (nearest 0.1°)
(b) $1^{c} = 57.295$ $^{\circ} = 57.3 ^{\circ}$ (nearest 0.1 $^{\circ}$)
(c) $1.135^{c} = 65.030$ ° = 65.0 ° (nearest 0.1 °)
(d) $\sqrt{3^{\circ}} = 99.239$ $^{\circ} = 99.2^{\circ}$ (nearest 0.1 $^{\circ}$)
(e) $2.5^{\circ} = 143.239$ $^{\circ} = 143.2^{\circ}$ (nearest 0.1 $^{\circ}$)
(f) $3.14^{\circ} = 179.908$ $^{\circ} = 179.9^{\circ}$ (nearest 0.1 $^{\circ}$)
(g) $3.49^{\circ} = 199.96$ $^{\circ} = 200.0^{\circ}$ (nearest 0.1 $^{\circ}$)

Radian measure and its applications Exercise A, Question 3

Question:

Use your calculator to write down the value, to 3 significant figures, of the following trigonometric functions.

(a) sin 0.5^c

(b) cos $\sqrt{2^c}$

(c) tan 1.05^c

(d) sin 2^c

(e) cos 3.6^c

Solution:

(a) $\sin 0.5^{\circ} = 0.47942$		= 0.479 (3 s.f.)
(b) $\cos \sqrt{2^c} = 0.1559$		= 0.156 (3 s.f.)
(c) tan $1.05^{\circ} = 1.7433$		= 1.74 (3 s.f.)
(d) $\sin 2^c = 0.90929$.	=	0.909 (3 s.f.)
(e) $\cos 3.6^{\rm c} = -0.8967$		= -0.897 (3 s.f.)
© Pearson Education Ltd 2008		

Radian measure and its applications Exercise A, Question 4

Question:

Convert the following angles to radians, giving your answers as multiples of π .

(a) 8° (b) 10° (c) 22.5° (d) 30° (e) 45° (f) 60° (g) 75° (h) 80° (i) 112.5° (j) 120° (k) 135° (l) 200° (m) 240° (n) 270° (o) 315° (p) 330°

Solution:

(a) 8 ° =
$$\frac{8}{180}$$
 $\frac{\pi}{180}$ rad = $\frac{2\pi}{45}$ rad 45

(b) 10 ° = 10 ×
$$\frac{\pi}{180}$$
 rad = $\frac{\pi}{18}$ rad

(c) 22.5 ° =
$$\frac{22.5 \times \frac{\pi}{180} \text{ rad}}{8} = \frac{\pi}{8} \text{ rad}$$

(d)
$$30^{\circ} = 30 \times \frac{\pi}{180}$$
 rad $= \frac{\pi}{6}$ rad
(e) $45^{\circ} = 45 \times \frac{\pi}{180}$ rad $= \frac{\pi}{4}$ rad
(f) $60^{\circ} = 2 \times$ answer to (d) $= \frac{\pi}{3}$ rad
(g) $75^{\circ} = \frac{75^{5} \times \pi}{180}$ rad $= \frac{5\pi}{12}$ rad
(h) $80^{\circ} = \frac{80^{\circ} \times \pi}{180}$ rad $= \frac{4\pi}{9}$ rad
(i) $112.5^{\circ} = 5 \times$ answer to (c) $= \frac{5\pi}{8}$ rad
(j) $120^{\circ} = 2 \times$ answer to (e) $= \frac{3\pi}{4}$ rad
(k) $135^{\circ} = 3 \times$ answer to (e) $= \frac{3\pi}{4}$ rad
(l) $200^{\circ} = \frac{200^{\circ} \times \pi}{180}$ rad $= \frac{10\pi}{9}$ rad
(m) $240^{\circ} = 2 \times$ answer to (j) $= \frac{4\pi}{3}$ rad
(m) $270^{\circ} = 3 \times 90^{\circ} = \frac{3\pi}{2}$ rad
(o) $315^{\circ} = 180^{\circ} + 135^{\circ} = \pi + \frac{3\pi}{4} = \frac{7\pi}{4}$ rad
(p) $330^{\circ} = 11 \times 30^{\circ} = \frac{11\pi}{6}$ rad

Radian measure and its applications Exercise A, Question 5

Question:

Use your calculator to convert the following angles to radians, giving your answers to 3 significant figures:

(a) 50°

(b) 75°

(c) 100°

(d) 160°

(e) 230°

(f) 320°

Solution:

(a) 50 °	= 0.8726	 c	$= 0.873^{\circ} (3 \text{ s.f.})$
(b) 75 °	= 1.3089	 c	= 1.31 ^c (3 s.f.)
(c) 100 °	° = 1.7453	 с	$= 1.75^{\rm c} (3 {\rm s.f.})$
(d) 160 °	° = 2.7925	 c	$= 2.79^{\circ} (3 \text{ s.f.})$
(e) 230 °	9 = 4.01425	 c	$= 4.01^{\circ} (3 \text{ s.f.})$
(f) 320 °	= 5.585	 c	= 5.59 ^c (3 s.f.)

Radian measure and its applications Exercise B, Question 1

Question:

An arc AB of a circle, centre O and radius r cm, subtends an angle θ radians at O. The length of AB is l cm.

(a) Find *l* when (i) $r = 6, \theta = 0.45$ (ii) $r = 4.5, \theta = 0.45$ (iii) $r = 20, \theta = \frac{3}{8}\pi$

(b) Find *r* when (i) $l = 10, \theta = 0.6$ (ii) $l = 1.26, \theta = 0.7$ (iii) $l = 1.5\pi, \theta = \frac{5}{12}\pi$

(c) Find θ when (i) l = 10, r = 7.5(ii) l = 4.5, r = 5.625(iii) $l = \sqrt{12}, r = \sqrt{3}$

Solution:

(a) Using $l = r\theta$ (i) $l = 6 \times 0.45 = 2.7$ (ii) $l = 4.5 \times 0.45 = 2.025$ (iii) $l = 20 \times \frac{3}{8}\pi = 7.5\pi$ (23.6 3 s.f.)

(b) Using
$$r = \frac{l}{\theta}$$

(i) $r = \frac{10}{0.6} = 16 \frac{2}{3}$
(ii) $r = \frac{1.26}{0.7} = 1.8$

(iii)
$$r = \frac{1.5\pi}{\frac{5}{12}\pi} = 1.5 \times \frac{12}{5} = \frac{18}{5} = 3\frac{3}{5}$$

(c) Using
$$\theta = \frac{l}{r}$$

(i) $\theta = \frac{10}{7.5} = 1 \frac{1}{3}$
(ii) $\theta = \frac{4.5}{5.625} = 0.8$
(iii) $\theta = \frac{\sqrt{12}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$

Radian measure and its applications Exercise B, Question 2

Question:

A minor arc *AB* of a circle, centre *O* and radius 10 cm, subtends an angle *x* at *O*. The major arc *AB* subtends an angle 5x at *O*. Find, in terms of π , the length of the minor arc *AB*.

Solution:

The total angle at the centre is $6x^c$ so $6x = 2\pi$ $x = \frac{\pi}{3}$

Using $l = r\theta$ to find minor arc *AB* $l = 10 \times \frac{\pi}{3} = \frac{10\pi}{3}$ cm

Radian measure and its applications Exercise B, Question 3

Question:

An arc *AB* of a circle, centre *O* and radius 6 cm, has length *l* cm. Given that the chord *AB* has length 6 cm, find the value of *l*, giving your answer in terms of π .

Solution:

 $\triangle OAB$ is equilateral, so $\angle AOB = \frac{\pi}{3}$ rad.

Using $l = r\theta$ $l = 6 \times \frac{\pi}{3} = 2\pi$

Radian measure and its applications Exercise B, Question 4

Question:

The sector of a circle of radius $\sqrt{10}$ cm contains an angle of $\sqrt{5}$ radians, as shown in the diagram. Find the length of the arc, giving your answer in the form $p \sqrt{q}$ cm, where p and q are integers.

Solution:

 $\sqrt{10}$ cm √<u>10</u>cm $\sqrt{5}^{\circ}$

Using $l = r\theta$ with $r = \sqrt{10}$ cm and $\theta = \sqrt{5^{c}}$ $l = \sqrt{10} \times \sqrt{5} = \sqrt{50} = \sqrt{25 \times 2} = 5 \sqrt{2}$ cm

Radian measure and its applications Exercise B, Question 5

Question:

Referring to the diagram, find:

(a) The perimeter of the shaded region when $\theta = 0.8$ radians.

(b) The value of θ when the perimeter of the shaded region is 14 cm.

Solution:

(a) Using $l = r\theta$, the smaller arc = $3 \times 0.8 = 2.4$ cm the larger arc = $(3 + 2) \times 0.8 = 4$ cm Perimeter = 2.4 cm + 2 cm + 4 cm + 2 cm = 10.4 cm

(b) The smaller arc = 3θ cm, the larger arc = 5θ cm. So perimeter = $(3\theta + 5\theta + 2 + 2)$ cm. As perimeter is 14 cm, $8\theta + 4 = 14$ $8\theta = 10$ $\theta = \frac{10}{8} = 1\frac{1}{4}$

Radian measure and its applications Exercise B, Question 6

Question:

A sector of a circle of radius r cm contains an angle of 1.2 radians. Given that the sector has the same perimeter as a square of area 36 cm², find the value of r.

Solution:

Using $l = r\theta$, the arc length = 1.2r cm. The area of the square $= 36 \text{ cm}^2$, so each side = 6 cm and the perimeter is, therefore, 24 cm. The perimeter of the sector = arc length + 2r cm = (1.2r + 2r) cm = 3.2r cm. The perimeter of square = perimeter of sector so 24 = 3.2r $r = \frac{24}{3.2} = 7.5$

Radian measure and its applications Exercise B, Question 7

Question:

A sector of a circle of radius 15 cm contains an angle of θ radians. Given that the perimeter of the sector is 42 cm, find the value of θ .

Solution:

```
Using l = r\theta, the arc length of the sector = 15\theta cm.
So the perimeter = (15\theta + 30) cm.
As the perimeter = 42 cm
15\theta + 30 = 42
\Rightarrow 15\theta = 12
\Rightarrow \theta = \frac{12}{15} = \frac{4}{5}
15cm/lcm
```

Radian measure and its applications Exercise B, Question 8

Question:

In the diagram AB is the diameter of a circle, centre O and radius 2 cm. The point C is on the circumference such that $\angle \text{COB} = \frac{2}{3}\pi$ radians.

(a) State the value, in radians, of \angle COA. The shaded region enclosed by the chord *AC*, arc *CB* and *AB* is the template for a brooch.

(b) Find the exact value of the perimeter of the brooch.

Solution:

(a) $\angle \text{COA} = \pi - \frac{2}{3}\pi = \frac{\pi}{3}$ rad

(b) The perimeter of the brooch = AB + arc BC + chord AC. AB = 4 cm arc BC = $r\theta$ with r = 2 cm and $\theta = \frac{2}{3}\pi$ so arc BC = $2 \times \frac{2}{3}\pi = \frac{4}{3}\pi$ cm As $\angle COA = \frac{\pi}{3}$ (60 °), $\triangle COA$ is equilateral, so chord AC = 2 cm The perimeter = 4 cm + $\frac{4}{3}\pi$ cm + 2 cm = $\left(6 + \frac{4}{3}\pi\right)$ cm

© Pearson Education Ltd 2008

PhysicsAndMathsTutor.com

Radian measure and its applications Exercise B, Question 9

Question:

The points A and B lie on the circumference of a circle with centre O and radius 8.5 cm. The point C lies on the major arc AB. Given that \angle ACB = 0.4 radians, calculate the length of the minor arc AB.

Solution:

Using the circle theorem: Angle subtended at the centre of the circle $= 2 \times$ angle subtended at the circumference $\angle AOB = 2 \angle ACB = 0.8^{c}$ Using $l = r\theta$ length of minor arc AB = 8.5×0.8 cm = 6.8 cm

Radian measure and its applications Exercise B, Question 10

Question:

In the diagram *OAB* is a sector of a circle, centre *O* and radius *R* cm, and $\angle AOB = 2\theta$ radians. A circle, centre *C* and radius *r* cm, touches the arc *AB* at *T*, and touches *OA* and *OB* at *D* and *E* respectively, as shown.

- (a) Write down, in terms of *R* and *r*, the length of *OC*.
- (b) Using $\triangle OCE$, show that $R\sin \theta = r (1 + \sin \theta)$.

(c) Given that sin $\theta = \frac{3}{4}$ and that the perimeter of the sector *OAB* is 21 cm, find *r*, giving your answer to 3 significant figures.

Solution:

(a) OC = OT - CT = R cm - r cm = (R - r) cm

(b) In $\triangle OCE$, $\angle CEO = 90^{\circ}$ (radius perpendicular to tangent) and $\angle COE = \theta (OT \text{ bisects } \angle AOB)$ Using sin $\angle COE = \frac{CE}{OC}$ $\sin \theta = \frac{r}{R-r}$ $(R-r) \sin \theta = r$ $R \sin \theta - r \sin \theta = r$ $R \sin \theta = r + r \sin \theta$ $R \sin \theta = r (1 + \sin \theta)$ (c) As sin $\theta = \frac{3}{4}, \frac{3}{4}R = \frac{7}{4}r \implies R = \frac{7}{3}r$ and $\theta = \sin^{-1} \frac{3}{4} = 0.84806 \dots c$

The perimeter of the sector $= 2R + 2R\theta = 2R \left(1 + \theta \right) = \frac{14}{3}r \left(1.84806 \dots \right)$

So
$$21 = \frac{14}{3}r \left(1.84806 \dots \right)$$

 $\Rightarrow r = \frac{21 \times 3}{14 (1.84806 \dots)} = \frac{9}{2 (1.84806 \dots)} = 2.43 (3 \text{ s.f.})$

Radian measure and its applications Exercise C, Question 1

Question:

(Note: give non-exact answers to 3 significant figures.)

Find the area of the shaded sector in each of the following circles with centre *C*. Leave your answer in terms of π , where appropriate.

PhysicsAndMathsTutor.com

Area of shaded sector $= \frac{1}{2} \times 9^2 \times \frac{\pi}{6} = \frac{27\pi}{4}$ cm² = 6.75 π cm²

Angle subtended at C by major arc $= 2\pi - \frac{\pi}{5} = \frac{9\pi}{5}$ rad Area of shaded sector $= \frac{1}{2} \times 1.2^2 \times \frac{9\pi}{5} = 1.296\pi$ cm²

Angle subtended at *C* by major arc = $(2\pi - 1.5)$ rad Area of shaded sector = $\frac{1}{2} \times 4^2 \times \left(2\pi - 1.5\right)$ = 38.3 cm² (3 s.f.)

The triangle is equilateral so angle at *C* in the triangle is $\frac{\pi}{3}$ rad. Angle subtended at *C* by shaded sector $= \pi - \frac{\pi}{3}$ rad $= \frac{2\pi}{3}$ rad Area of shaded sector $= \frac{1}{2} \times 4^2 \times \frac{2\pi}{3} = \frac{16}{3}\pi$ cm²

As triangle is isosceles, angle at *C* in shaded sector is 0.4^c. Area of shaded sector $= \frac{1}{2} \times 5^2 \times 0.4 = 5 \text{ cm}^2$

Radian measure and its applications Exercise C, Question 2

Question:

(Note: give non-exact answers to 3 significant figures.)

For the following circles with centre C, the area A of the shaded sector is given. Find the value of x in each case.

Solution:

PhysicsAndMathsTutor.com

So $20 = \frac{1}{2} \times 4.5^2 x$

$$\Rightarrow x = \frac{40}{4.5^2} = 1.98 (3 \text{ s.f.})$$

Radian measure and its applications Exercise C, Question 3

Question:

(Note: give non-exact answers to 3 significant figures.)

The arc AB of a circle, centre O and radius 6 cm, has length 4 cm. Find the area of the minor sector AOB.

Solution:

Using $l = r\theta$ $4 = 6\theta$ $\theta = \frac{2}{3}$

So area of sector = $\frac{1}{2} \times 6^2 \times \frac{2}{3} = 12 \text{ cm}^2$

Radian measure and its applications Exercise C, Question 4

Question:

(Note: give non-exact answers to 3 significant figures.)

The chord AB of a circle, centre O and radius 10 cm, has length 18.65 cm and subtends an angle of θ radians at O.

(a) Show that $\theta = 2.40$ (to 3 significant figures).

(b) Find the area of the minor sector AOB.

Solution:

Using the line of symmetry in the isosceles triangle *OAB* θ 9.325

$$\sin \frac{1}{2} = \frac{1}{10}$$

$$\frac{\theta}{2} = \sin^{-1} \left(\frac{9.325}{10} \right) \text{ (Use radian mode)}$$

$$\theta = 2 \sin^{-1} \left(\frac{9.325}{10} \right) = 2.4025 \dots = 2.40 \text{ (3 s.f.)}$$

(b) Area of minor sector $AOB = \frac{1}{2} \times 10^2 \times \theta = 120 \text{ cm}^2 (3 \text{ s.f.})$

Radian measure and its applications Exercise C, Question 5

Question:

(Note: give non-exact answers to 3 significant figures.)

The area of a sector of a circle of radius 12 cm is 100 cm^2 . Find the perimeter of the sector.

Solution:

Using area of sector $= \frac{1}{2}r^2\theta$

$$100 = \frac{1}{2} \times 12^2 \theta$$
$$\Rightarrow \quad \theta = \frac{100}{72} = \frac{25}{18} c$$

The perimeter of the sector = $12 + 12 + 12\theta = 12 \left(2 + \theta \right) = 12 \times \frac{61}{18} = \frac{122}{3} = 40 \frac{2}{3}$ cm

Radian measure and its applications Exercise C, Question 6

Question:

(Note: give non-exact answers to 3 significant figures.)

The arc *AB* of a circle, centre *O* and radius *r* cm, is such that \angle AOB = 0.5 radians. Given that the perimeter of the minor sector *AOB* is 30 cm:

(a) Calculate the value of *r*.

- (b) Show that the area of the minor sector AOB is 36 cm².
- (c) Calculate the area of the segment enclosed by the chord AB and the minor arc AB.

Solution:

(a) The perimeter of minor sector AOB = r + r + 0.5r = 2.5r cm So 30 = 2.5r

$$\Rightarrow$$
 $r = \frac{30}{2.5} = 12$

(b) Area of minor sector $= \frac{1}{2} \times r^2 \times \theta = \frac{1}{2} \times 12^2 \times 0.5 = 36 \text{ cm}^2$

(c) Area of segment

$$= \frac{1}{2}r^{2} \left(\theta - \sin \theta \right)$$
$$= \frac{1}{2} \times 12^{2} \left(0.5 - \sin 0.5 \right)$$
$$= 72 (0.5 - \sin 0.5)$$
$$= 1.48 \text{ cm}^{2} (3 \text{ s.f.})$$

Radian measure and its applications Exercise C, Question 7

Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, *AB* is the diameter of a circle of radius *r* cm and \angle BOC = θ radians. Given that the area of \triangle COB is equal to that of the shaded segment, show that $\theta + 2 \sin \theta = \pi$.

Radian measure and its applications Exercise C, Question 8

Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, *BC* is the arc of a circle, centre *O* and radius 8 cm. The points *A* and *D* are such that OA = OD = 5 cm. Given that $\angle BOC = 1.6$ radians, calculate the area of the shaded region.

Solution:

Area of sector OBC = $\frac{1}{2}r^2\theta$ with r = 8 cm and $\theta = 1.6^{\circ}$ Area of sector OBC = $\frac{1}{2} \times 8^2 \times 1.6 = 51.2$ cm² Using area of triangle formula

PhysicsAndMathsTutor.com

Area of $\triangle OAD = \frac{1}{2} \times 5 \times 5 \times \text{ sin } 1.6^{\circ} = 12.495 \text{ cm}^2$ Area of shaded region = 51.2 - 12.495 = 38.7 cm² (3 s.f.)

Radian measure and its applications Exercise C, Question 9

Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, AB and AC are tangents to a circle, centre O and radius 3.6 cm. Calculate the area of the shaded region, given that $\angle BOC = \frac{2}{3}\pi$ radians.

Solution:

In right-angled $\triangle OBA$: tan $\frac{\pi}{3} = \frac{AB}{3.6}$ $\Rightarrow AB = 3.6 \text{ tan } \frac{\pi}{3}$ Area of $\triangle OBA = \frac{1}{2} \times 3.6 \times 3.6 \times \text{ tan } \frac{\pi}{3}$ So area of quadrilateral OBAC = $3.6^2 \times \text{ tan } \frac{\pi}{3} = 22.447$... cm² Area of sector = $\frac{1}{2} \times 3.6^2 \times \frac{2}{3}\pi = 13.57$... cm²

Area of shaded region

PhysicsAndMathsTutor.com

= area of quadrilateral OBAC – area of sector OBC= 8.88 cm² (3 s.f.)

Radian measure and its applications Exercise C, Question 10

Question:

(Note: give non-exact answers to 3 significant figures.)

A chord *AB* subtends an angle of θ radians at the centre *O* of a circle of radius 6.5 cm. Find the area of the segment enclosed by the chord *AB* and the minor arc *AB*, when:

(a) $\theta = 0.8$

(b)
$$\theta = \frac{2}{3}\pi$$

(c)
$$\theta = \frac{4}{3}\pi$$

Solution:

(a) Area of sector OAB = $\frac{1}{2} \times 6.5^2 \times 0.8$ Area of $\triangle OAB = \frac{1}{2} \times 6.5^2 \times \sin 0.8$ Area of segment = $\frac{1}{2} \times 6.5^2 \times 0.8 - \frac{1}{2} \times 6.5^2 \times \sin 0.8 = 1.75$ cm² (3 s.f.)

(b) Area of segment
$$= \frac{1}{2} \times 6.5^2 \left(\frac{2}{3} \pi - \sin \frac{2}{3} \pi \right) = 25.9 \text{ cm}^2 (3 \text{ s.f.})$$

(c) Area of segment = $\frac{1}{2} \times 6.5^2 \left(\frac{2}{3} \pi - \sin \frac{2}{3} \pi \right) = 25.9 \text{ cm}^2 (3 \text{ s.f.})$

Diagram shows why $\frac{2}{3}\pi$ is required.

© Pearson Education Ltd 2008

Radian measure and its applications Exercise C, Question 11

Question:

(Note: give non-exact answers to 3 significant figures.)

An arc *AB* subtends an angle of 0.25 radians at the *circumference* of a circle, centre *O* and radius 6 cm. Calculate the area of the minor sector *OAB*.

Solution:

Using the circle theorem: angle at the centre $= 2 \times$ angle at circumference $\angle AOB = 0.5^{c}$

Area of minor sector AOB = $\frac{1}{2} \times 6^2 \times 0.5 = 9$ cm²

Radian measure and its applications Exercise C, Question 12

Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, *AD* and *BC* are arcs of circles with centre *O*, such that OA = OD = r cm, AB = DC = 8 cm and $\angle BOC = \theta$ radians.

(a) Given that the area of the shaded region is 48 cm², show that $r = \frac{6}{\theta} - 4$.

(b) Given also that $r = 10\theta$, calculate the perimeter of the shaded region.

Solution:

Area of larger sector $= \frac{1}{2} (r+8)^2 \theta \text{ cm}^2$ Area of smaller sector $= \frac{1}{2}r^2\theta \text{ cm}^2$

Area of shaded region

$$= \frac{1}{2} (r+8)^2 \theta - \frac{1}{2}r^2 \theta \text{ cm}^2$$
$$= \frac{1}{2}\theta \left[\left(r^2 + 16r + 64 \right) - r^2 \right] \text{ cm}^2$$

PhysicsAndMathsTutor.com

$$= \frac{1}{2}\theta \left(16r + 64 \right) \text{ cm}^{2}$$

$$= 8\theta (r+4) \text{ cm}^{2}$$
So $48 = 8\theta (r+4)$

$$\Rightarrow 6 = r\theta + 4\theta \quad *$$

$$\Rightarrow r\theta = 6 - 4\theta$$

$$\Rightarrow r = \frac{6}{\theta} - 4$$

(b) As $r = 10\theta$, using * $10\theta^2 + 4\theta - 6 = 0$ $5\theta^2 + 2\theta - 3 = 0$ $(5\theta - 3) (\theta + 1) = 0$ So $\theta = \frac{3}{5}$ and $r = 10\theta = 6$

Perimeter of shaded region = $[r\theta + 8 + (r + 8)\theta + 8]$ cm So perimeter = $\frac{18}{5} + 8 + \frac{42}{5} + 8 = 28$ cm

Radian measure and its applications Exercise C, Question 13

Question:

(Note: give non-exact answers to 3 significant figures.)

A sector of a circle of radius 28 cm has perimeter P cm and area A cm². Given that A = 4P, find the value of P.

Solution:

The area of the sector = $\frac{1}{2} \times 28^2 \times \theta = 392\theta$ cm² = A cm²

The perimeter of the sector = $(28\theta + 56)$ cm = P cm As A = 4P $392\theta = 4 (28\theta + 56)$ $98\theta = 28\theta + 56$ $70\theta = 56$ $\theta = \frac{56}{70} = 0.8$ $P = 28\theta + 56 = 28 (0.8) + 56 = 78.4$

Radian measure and its applications Exercise C, Question 14

Question:

(Note: give non-exact answers to 3 significant figures.)

The diagram shows a triangular plot of land. The sides *AB*, *BC* and *CA* have lengths 12 m, 14 m and 10 m respectively. The lawn is a sector of a circle, centre *A* and radius 6 m.

(a) Show that $\angle BAC = 1.37$ radians, correct to 3 significant figures.

(b) Calculate the area of the flowerbed.

Solution:

(b) Area of $\triangle ABC = \frac{1}{2} \times 12 \times 10 \times \sin A = 58.787 \dots m^2$ Area of sector (lawn) $= \frac{1}{2} \times 6^2 \times A = 24.649 \dots m^2$ Area of flowerbed = area of $\triangle ABC$ – area of sector = 34.1m² (3 s.f.)

Radian measure and its applications Exercise D, Question 1

Question:

Triangle *ABC* is such that AB = 5 cm, AC = 10 cm and $\angle ABC = 90^{\circ}$. An arc of a circle, centre *A* and radius 5 cm, cuts *AC* at *D*.

(a) State, in radians, the value of \angle BAC.

(b) Calculate the area of the region enclosed by *BC*, *DC* and the arc *BD*.

Solution:

(a) In the right-angled $\triangle ABC$ $\cos \angle BAC = \frac{5}{10} = \frac{1}{2}$ $\angle BAC = \frac{\pi}{3}$

(b) Area of $\triangle ABC = \frac{1}{2} \times 5 \times 10 \times \sin \frac{\pi}{3} = 21.650 \dots \text{ cm}^2$ Area of sector DAB = $\frac{1}{2} \times 5^2 \times \frac{\pi}{3} = 13.089 \dots \text{ cm}^2$ Area of shaded region = area of $\triangle ABC$ – area of sector $DAB = 8.56 \text{ cm}^2$ (3 s.f.)

Radian measure and its applications Exercise D, Question 2

Question:

The diagram shows a minor sector *OMN* of a circle centre *O* and radius *r* cm. The perimeter of the sector is 100 cm and the area of the sector is $A \text{ cm}^2$.

(a) Show that $A = 50r - r^2$.

(b) Given that *r* varies, find:

(i) The value of r for which A is a maximum and show that A is a maximum.

(ii) The value of $\ \ \angle$ MON for this maximum area.

(iii) The maximum area of the sector OMN.

[E]

Solution:

(a) Let $\angle MON = \theta^c$ Perimeter of sector $= (2r + r\theta)$ cm So $100 = 2r + r\theta$ $\Rightarrow r\theta = 100 - 2r$ $\Rightarrow \theta = \frac{100}{r} - 2*$

The area of the sector $= A \operatorname{cm}^2 = \frac{1}{2}r^2\theta \operatorname{cm}^2$

So
$$A = \frac{1}{2}r^2 \left(\frac{100}{r} - 2\right)$$

 $\Rightarrow A = 50r - r^2$

PhysicsAndMathsTutor.com

(b) (i) $A = -(r^2 - 50r) = -[(r - 25)^2 - 625] = 625 - (r - 25)^2$ The maximum value occurs when r = 25, as for all other values of r something is subtracted from 625. (ii) Using *, when r = 25, $\theta = \frac{100}{25} - 2 = 2^{c}$

(iii) Maximum area = 625 cm^2

Radian measure and its applications Exercise D, Question 3

Question:

The diagram shows the triangle *OCD* with OC = OD = 17 cm and CD = 30 cm. The mid-point of *CD* is *M*. With centre *M*, a semicircular arc A_1 is drawn on *CD* as diameter. With centre *O* and radius 17 cm, a circular arc A_2 is drawn from *C* to *D*. The shaded region *R* is bounded by the arcs A_1 and A_2 . Calculate, giving answers to 2 decimal places:

(a) The area of the triangle OCD.

(b) The angle *COD* in radians.

(c) The area of the shaded region R.

[E]

Solution:

(a) Using Pythagoras' theorem to find *OM*: $OM^2 = 17^2 - 15^2 = 64$

PhysicsAndMathsTutor.com

(b) In \triangle OCM: sin \angle COM = $\frac{15}{17} \Rightarrow \angle$ COM = 1.0808 ... ^c So \angle COD = 2 × \angle COM = 2.16^c (2 d.p.)

(c) Area of shaded region R = area of semicircle – area of segment CDA_2 Area of segment = area of sector OCD – area of sector $\triangle OCD$

$$= \frac{1}{2} \times 17^{2} \left(\angle \text{COD} - \sin \angle \text{COD} \right) \text{ (angles in radians)}$$
$$= 192.362 \dots \text{ cm}^{2} \text{ (use at least 3 d.p.)}$$
Area of semicircle
$$= \frac{1}{2} \times \pi \times 15^{2} = 353.429 \dots \text{ cm}^{2}$$

So area of shaded region R = 353.429 ... - 192.362 ... = 161.07 cm² (2 d.p.)

Radian measure and its applications Exercise D, Question 4

Question:

The diagram shows a circle, centre *O*, of radius 6 cm. The points *A* and *B* are on the circumference of the circle. The area of the shaded major sector is 80 cm². Given that $\angle AOB = \theta$ radians, where $0 < \theta < \pi$, calculate:

(a) The value, to 3 decimal places, of θ .

(b) The length in cm, to 2 decimal places, of the minor arc AB.

[E]

Solution:

(b) Length of minor arc AB = 6θ = 11.03 cm (2 d.p.)

Radian measure and its applications Exercise D, Question 5

Question:

The diagram shows a sector *OAB* of a circle, centre *O* and radius *r* cm. The length of the arc *AB* is *p* cm and \angle AOB is θ radians.

(a) Find θ in terms of p and r.

(b) Deduce that the area of the sector is $\frac{1}{2}$ pr cm².

Given that r = 4.7 and p = 5.3, where each has been measured to 1 decimal place, find, giving your answer to 3 decimal places:

(c) The least possible value of the area of the sector.

(d) The range of possible values of θ .

[E]

Solution:

(b) Area of sector
$$= \frac{1}{2}r^2\theta = \frac{1}{2}r^2 \times \frac{p}{r} = \frac{1}{2}\text{pr}\text{ cm}^2$$

(c) $4.65 \le r < 4.75, 5.25 \le p < 5.35$ Least value for area of sector $=\frac{1}{2} \times 5.25 \times 4.65 = 12.207 \text{ cm}^2$ (3 d.p.) (Note: Lowest is 12.20625, so 12.207 should be given.)

(d) Max value of $\theta = \frac{\max p}{\min r} = \frac{5.35}{4.65} = 1.1505$... So give 1.150 (3 d.p.) Min value of $\theta = \frac{\min p}{\max r} = \frac{5.25}{4.75} = 1.10526$... So give 1.106 (3 d.p.)

Radian measure and its applications Exercise D, Question 6

Question:

The diagram shows a circle centre O and radius 5 cm. The length of the minor arc AB is 6.4 cm.

(a) Calculate, in radians, the size of the acute angle *AOB*. The area of the minor sector *AOB* is $R_1 \text{ cm}^2$ and the area of the shaded major sector *AOB* is $R_2 \text{ cm}^2$.

(b) Calculate the value of R_1 .

(c) Calculate R_1 : R_2 in the form 1: p, giving the value of p to 3 significant figures.

[E]

Solution:

PhysicsAndMathsTutor.com

(b) Using area of sector $= \frac{1}{2}r^2\theta$ $R_1 = \frac{1}{2} \times 5^2 \times 1.28 = 16$ (c) $R_2 = \text{ area of circle } -R_1 = \pi 5^2 - 16 = 62.5398 \dots$ So $\frac{R_1}{R_2} = \frac{16}{62.5398} = \frac{1}{3.908} = \frac{1}{p}$ $\Rightarrow p = 3.91 (3 \text{ s.f.})$

Radian measure and its applications Exercise D, Question 7

Question:

The diagrams show the cross-sections of two drawer handles. Shape X is a rectangle ABCD joined to a semicircle with BC as diameter. The length AB = d cm and BC = 2d cm. Shape Y is a sector OPQ of a circle with centre O and radius 2d cm. Angle POQ is θ radians. Given that the areas of shapes X and Y are equal:

(a) Prove that $\theta = 1 + \frac{1}{4}\pi$.

Using this value of θ , and given that d = 3, find in terms of π :

(b) The perimeter of shape *X*.

(c) The perimeter of shape *Y*.

(d) Hence find the difference, in mm, between the perimeters of shapes X and Y. **[E]**

Solution:

(a) Area of shape X= area of rectangle + area of semicircle

$$= 2d^2 + \frac{1}{2}\pi d^2 \,\mathrm{cm}^2$$

Area of shape $Y = \frac{1}{2} (2d)^2 \theta = 2d^2\theta \text{ cm}^2$

As X = Y: $2d^2 + \frac{1}{2}\pi d^2 = 2d^2\theta$

Divide by $2d^2$: $1 + \frac{\pi}{4} = \theta$

(b) Perimeter of X
=
$$(d + 2d + d + \pi d)$$

 $+2d + d + \pi d$) cm with d = 3 $= (3\pi + 12)$ cm

(c) Perimeter of Y

$$= (2d + 2d + 2d\theta) \text{ cm with } d = 3 \text{ and } \theta = 1 + \frac{\pi}{4}$$
$$= 12 + 6 \left(1 + \frac{\pi}{4}\right)$$
$$= \left(18 + \frac{3\pi}{2}\right) \text{ cm}$$

(d) Difference (in mm)

$$= \left[\left(18 + \frac{3\pi}{2} \right) - \left(3\pi + 12 \right) \right] \times 10$$
$$= 10 \left(6 - \frac{3\pi}{2} \right)$$
$$= 12.87 \dots$$
$$= 12.9 (3 \text{ s.f.})$$

Radian measure and its applications Exercise D, Question 8

Question:

The diagram shows a circle with centre O and radius 6 cm. The chord PQ divides the circle into a minor segment R_1 of area A_1 cm² and a major segment R_2 of area A_2 cm². The chord PQ subtends an angle θ radians at O.

(a) Show that $A_1 = 18 (\theta - \sin \theta)$. Given that $A_2 = 3A_1$ and f $(\theta) = 2\theta - 2 \sin \theta - \pi$:

(b) Prove that $f(\theta) = 0$.

(c) Evaluate f(2.3) and f(2.32) and deduce that $2.3 < \theta < 2.32$. **[E]**

Solution:

(a) Area of segment R_1 = area of sector OPQ – area of triangle OPQ

$$\Rightarrow A_1 = \frac{1}{2} \times 6^2 \times \theta - \frac{1}{2} \times 6^2 \times \sin \theta$$
$$\Rightarrow A_1 = 18 (\theta - \sin \theta)$$

(b) Area of segment R_2 = area of circle – area of segment R_1

 $\Rightarrow \quad A_2 = \pi 6^2 - 18 \ (\ \theta - \sin \ \theta \)$

PhysicsAndMathsTutor.com

 $\Rightarrow A_2 = 36\pi - 18\theta + 18 \sin \theta$ As $A_2 = 3A_1$ $36\pi - 18\theta + 18 \sin \theta = 3(18\theta - 18 \sin \theta) = 54\theta - 54 \sin \theta$ So $72\theta - 72 \sin \theta - 36\pi = 0$ $\Rightarrow 36(2\theta - 2 \sin \theta - \pi) = 0$ $\Rightarrow 2\theta - 2 \sin \theta - \pi = 0$ So f (θ) = 0
(c) f (2.3) = -0.0330 ...

f (2.32) = + 0.0339 ... As there is a change of sign θ lies between 2.3 and 2.32.

Radian measure and its applications Exercise D, Question 9

Question:

Triangle *ABC* has AB = 9 cm, BC = 10 cm and CA = 5 cm. A circle, centre *A* and radius 3 cm, intersects *AB* and *AC* at *P* and *Q* respectively, as shown in the diagram.

(a) Show that, to 3 decimal places, \angle BAC = 1.504 radians.

(b) Calculate:

- (i) The area, in cm^2 , of the sector *APQ*.
- (ii) The area, in cm^2 , of the shaded region *BPQC*.
- (iii) The perimeter, in cm, of the shaded region BPQC. [E]

Solution:

(a) In $\triangle ABC$ using the cosine rule:

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$\Rightarrow \quad \cos \ \ \angle BAC = \ \frac{5^2 + 9^2 - 10^2}{2 \times 5 \times 9} = 0.06$$
$$\Rightarrow \quad \angle BAC = 1.50408 \quad \dots \quad \text{radians} = 1.504^{\text{c}} \text{ (3 d.p.)}$$

(b) (i) Using the sector area formula: area of sector $= \frac{1}{2}r^2\theta$

 $\Rightarrow \text{ area of sector APQ} = \frac{1}{2} \times 3^2 \times 1.504 = 6.77 \text{ cm}^2 (3 \text{ s.f.})$ (ii) Area of shaded region *BPQC* = area of $\triangle ABC$ - area of sector *APQ* = $\frac{1}{2} \times 5 \times 9 \times \sin 1.504^{\text{c}} - \frac{1}{2} \times 3^2 \times 1.504 \text{ cm}^2$ = 15.681 ... cm² = 15.7 cm² (3 s.f.) (iii) Perimeter of shaded region *BPQC*

= QC + CB + BP + arc PQ= 2 + 10 + 6 + (3 × 1.504) cm

= 22.51 ... cm

= 22.5 cm (3 s.f.)

Radian measure and its applications Exercise D, Question 10

Question:

The diagram shows the sector *OAB* of a circle of radius *r* cm. The area of the sector is 15 cm^2 and $\angle \text{AOB} = 1.5$ radians.

(a) Prove that $r = 2 \sqrt{5}$.

(b) Find, in cm, the perimeter of the sector *OAB*. The segment *R*, shaded in the diagram, is enclosed by the arc *AB* and the straight line *AB*.

(c) Calculate, to 3 decimal places, the area of R.

[E]

Solution:

PhysicsAndMathsTutor.com

(b) Arc length AB = $r (1.5) = 3\sqrt{5}$ cm Perimeter of sector = AO + OB + arc AB = $(2\sqrt{5} + 2\sqrt{5} + 3\sqrt{5})$ cm = $7\sqrt{5}$ cm = 15.7 cm (3 s.f.)

(c) Area of segment R = area of sector - area of triangle = $15 - \frac{1}{2}r^2 \sin 1.5^{\circ} \text{ cm}^2$

= $(15 - 10 \sin 1.5^{\circ}) \text{ cm}^2$ = 5.025 cm² (3 d.p.)

Radian measure and its applications Exercise D, Question 11

Question:

The shape of a badge is a sector ABC of a circle with centre A and radius AB, as shown in the diagram. The triangle ABC is equilateral and has perpendicular height 3 cm.

(a) Find, in surd form, the length of *AB*.

(b) Find, in terms of π , the area of the badge.

(c) Prove that the perimeter of the badge is $\frac{2\sqrt{3}}{3}\left(\pi+6\right)$ cm.

[E]

Solution:

(a) Using the right-angled $\triangle ABD$, with $\angle ABD = 60^{\circ}$,

$$\sin 60^\circ = \frac{3}{AB}$$

$$\Rightarrow AB = \frac{3}{\sin 60^{\circ}} = \frac{3}{\frac{\sqrt{3}}{2}} = 3 \times \frac{2}{\sqrt{3}} = 2 \sqrt{3} \text{ cm}$$

PhysicsAndMathsTutor.com

(b) Area of badge = area of sector = $\frac{1}{2} \times (2 \sqrt{3})^2 \theta$ where $\theta = \frac{\pi}{3}$ = $\frac{1}{2} \times 12 \times \frac{\pi}{3}$ = $2\pi \text{ cm}^2$

(c) Perimeter of badge = AB + AC + arc BC

$$= AB + AC + arc BC$$

$$= \left(2\sqrt{3} + 2\sqrt{3} + 2\sqrt{3} \frac{\pi}{3} \right) cm$$

$$= 2\sqrt{3} \left(2 + \frac{\pi}{3} \right) cm$$

$$= \frac{2\sqrt{3}}{3} \left(6 + \pi \right) cm$$

Radian measure and its applications Exercise D, Question 12

Question:

There is a straight path of length 70 m from the point A to the point B. The points are joined also by a railway track in the form of an arc of the circle whose centre is C and whose radius is 44 m, as shown in the diagram.

(a) Show that the size, to 2 decimal places, of \angle ACB is 1.84 radians.

(b) Calculate:

(i) The length of the railway track.

(ii) The shortest distance from *C* to the path.

(iii) The area of the region bounded by the railway track and the path.

[E]

Solution:

(a) Using right-angled $\triangle ADC$ $\sin \angle ACD = \frac{35}{44}$ So $\angle ACD = \sin^{-1} \left(\frac{35}{44} \right)$ and $\angle ACB = 2 \sin^{-1} \left(\frac{35}{44} \right)$

(work in radian mode)

 $\Rightarrow \angle ACB = 1.8395 \dots = 1.84^{c} (2 \text{ d.p.})$

(b) (i) Length of railway track = length of arc AB = 44 × 1.8395 ... = 80.9 m (3 s.f.) (ii) Shortest distance from C to AB is DC. Using Pythagoras' theorem: $DC^2 = 44^2 - 35^2$ $DC = \sqrt{44^2 - 35^2} = 26.7 \text{ m} (3 \text{ s.f.})$ (iii) Area of region = area of segment = area of sector ABC - area of \triangle ABC $= \frac{1}{2} \times 44^2 \times 1.8395 \dots - \frac{1}{2} \times 70 \times \text{DC}$ (or $\frac{1}{2} \times 44^2 \times \sin 1.8395 \dots$ ^c) = 847 m² (3 s.f.)

Radian measure and its applications Exercise D, Question 13

Question:

The diagram shows the cross-section *ABCD* of a glass prism. AD = BC = 4 cm and both are at right angles to *DC*. *AB* is the arc of a circle, centre *O* and radius 6 cm. Given that $\angle AOB = 2\theta$ radians, and that the perimeter of the cross-section is 2 (7 + π) cm:

(a) Show that
$$\left(2\theta+2 \sin \theta-1\right) = \frac{\pi}{3}$$
.

(b) Verify that
$$\theta = \frac{\pi}{6}$$
.

(c) Find the area of the cross-section.

Solution:

(a) In \triangle OAX (see diagram) $\frac{x}{6} = \sin \theta$ $\Rightarrow x = 6 \sin \theta$ So AB = 2x = 12 sin θ (AB = DC) The perimeter of cross-section = arc AB + AD + DC + BC = [6(2 θ) + 4 + 12 sin θ + 4] cm = (8 + 12 θ + 12 sin θ) cm

PhysicsAndMathsTutor.com

Divide by 6: $2\theta + 2 \sin \theta - 1 = \frac{\pi}{3}$

(b) When
$$\theta = \frac{\pi}{6}$$
, $2\theta + 2 \sin \theta - 1 = \frac{\pi}{3} + \left(2 \times \frac{1}{2}\right) - 1 = \frac{\pi}{3} \checkmark$

The area of cross-section = area of rectangle ABCD – area of shaded segment

Area of rectangle = 4 × $\begin{pmatrix} 12 \sin \frac{\pi}{6} \end{pmatrix}$ = 24 cm²

Area of shaded segment

= area of sector - area of triangle

 $= \frac{1}{2} \times 6^{2} \times \frac{\pi}{3} - \frac{1}{2} \times 6^{2} \sin \frac{\pi}{3}$ $= 3.261 \dots \text{ cm}^{2}$

So area of cross-section = 20.7 cm^2 (3 s.f.)

Radian measure and its applications Exercise D, Question 14

Question:

Two circles C_1 and C_2 , both of radius 12 cm, have centres O_1 and O_2 respectively. O_1 lies on the circumference of C_2 ; O_2 lies on the circumference of C_1 . The circles intersect at A and B, and enclose the region R.

(a) Show that $\angle AO_1B = \frac{2}{3}\pi$ radians.

(b) Hence write down, in terms of π , the perimeter of *R*.

(c) Find the area of *R*, giving your answer to 3 significant figures.

Solution:

(a) $\triangle AO_1O_2$ is equilateral.

So
$$\angle AO_1O_2 = \frac{\pi}{3}$$
 radians
 $\angle AO_1B = 2 \angle AO_1O_2 = \frac{2\pi}{3}$ radians

(b) Consider arc AO_2B in circle C_1 . Using arc length $= r\theta$ arc $AO_2B = 12 \times \frac{2\pi}{3} = 8\pi$ cm Perimeter of $R = \operatorname{arc} AO_2B + \operatorname{arc} AO_1B = 2 \times 8\pi = 16\pi$ cm

(c) Consider the segment AO_2B in circle C_1 . Area of segment AO_2B = area of sector O_1AB – area of $\triangle O_1AB$ = $\frac{1}{2} \times 12^2 \times \frac{2\pi}{3} - \frac{1}{2} \times 12^2 \times \sin \frac{2\pi}{3}$ = 88.442 ... cm² Area of region R= area of segment AO_2B + area of segment AO_1B = 2 × 88.442 ... cm² = 177 cm² (3 s.f.)