Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications
Exercise A, Question 1

Question:

Convert the following angles in radians to degrees:
(a) $\frac{\pi}{20}$
(b) $\frac{\pi}{15}$
(c) $\frac{5 \pi}{12}$
(d) $\frac{\pi}{2}$
(e) $\frac{7 \pi}{9}$
(f) $\frac{7 \pi}{6}$
(g) $\frac{5 \pi}{4}$
(h) $\frac{3 \pi}{2}$
(i) 3π

Solution:

(a) $\frac{\pi}{20} \mathrm{rad}=\frac{180^{\circ}}{20}=9^{\circ}$
(b) $\frac{\pi}{15} \mathrm{rad}=\frac{180^{\circ}}{15}=12^{\circ}$
15°
(c) $\frac{5 \pi}{12} \mathrm{rad}=\frac{5 \times 180^{\circ}}{12}=75^{\circ}$
(d) $\frac{\pi}{2} \mathrm{rad}=\frac{180^{\circ}}{2}=90^{\circ}$
(e) $\frac{7 \pi}{9} \mathrm{rad}=\frac{7 \times 180^{\circ}}{9^{\circ}}=140^{\circ}$
(f) $\frac{7 \pi}{6} \mathrm{rad}=\frac{30^{\circ}}{7 \times 180^{\circ}} \begin{aligned} & 6\end{aligned} 210^{\circ}$
(g) $\frac{5 \pi}{4} \mathrm{rad}=\frac{5 \times 180^{\circ}}{4}=225^{\circ}$
(h) $\frac{3 \pi}{2} \mathrm{rad}=3 \times 90^{\circ}=270^{\circ}$
(i) $3 \pi \mathrm{rad}=3 \times 180^{\circ}=540^{\circ}$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications
Exercise A, Question 2

Question:

Use your calculator to convert the following angles to degrees, giving your answer to the nearest 0.1° :
(a) 0.46^{C}
(b) 1^{c}
(c) 1.135°
(d) $\sqrt{ } 3^{c}$
(e) 2.5^{c}
(f) 3.14^{c}
(g) 3.49^{c}

Solution:

(a) $0.46^{\mathrm{c}}=26.356 \quad \ldots \quad \circ=26.4^{\circ}$ (nearest 0.1°)
(b) $1^{\mathrm{c}}=57.295 \quad \ldots \quad{ }^{\circ}=57.3^{\circ}\left(\right.$ nearest $\left.0.1^{\circ}\right)$
(c) $1.135^{\mathrm{c}}=65.030 \quad \ldots \quad \circ=65.0^{\circ}$ (nearest 0.1°)
(d) $\sqrt{ } 3^{c}=99.239 \quad \ldots \quad \circ=99.2^{\circ}$ (nearest 0.1°)
(e) $2.5^{\mathrm{c}}=143.239 \quad \ldots \quad \circ=143.2^{\circ}\left(\right.$ nearest 0.1°)
(f) $3.14^{\mathrm{c}}=179.908 \quad \ldots \quad{ }^{\circ}=179.9^{\circ}$ (nearest 0.1°)
(g) $3.49^{\mathrm{c}}=199.96 \quad \ldots \quad \circ=200.0^{\circ}$ (nearest 0.1°)
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise A, Question 3

Question:

Use your calculator to write down the value, to 3 significant figures, of the following trigonometric functions.
(a) $\sin 0.5^{c}$
(b) $\cos \quad \sqrt{ } 2^{c}$
(c) $\tan 1.05^{\circ}$
(d) $\sin 2^{c}$
(e) $\cos 3.6^{\mathrm{c}}$

Solution:

(a) $\sin 0.5^{c}=0.47942 \quad \ldots \quad=0.479$ (3 s.f.)
(b) $\cos \quad \sqrt{ } 2^{c}=0.1559 \quad \ldots \quad=0.156$ (3 s.f.)
(c) $\tan 1.05^{\mathrm{c}}=1.7433 \quad \ldots \quad=1.74$ (3 s.f.)
(d) $\sin 2^{c}=0.90929 \quad \ldots \quad=0.909(3$ s.f.)
(e) $\cos 3.6^{c}=-0.8967 \quad \ldots \quad=-0.897$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications
Exercise A, Question 4

Question:

Convert the following angles to radians, giving your answers as multiples of π.
(a) 8°
(b) 10°
(c) 22.5°
(d) 30°
(e) 45°
(f) 60°
(g) 75°
(h) 80°
(i) 112.5°
(j) 120°
(k) 135°
(l) 200°
(m) 240°
(n) 270°
(o) 315°
(p) 330°

Solution:
(a) $8^{\circ}=8^{8} \times \frac{\pi}{180} \mathrm{rad}=\frac{2 \pi}{45} \mathrm{rad}$

45
(b) $10^{\circ}=10 \times \frac{\pi}{180} \mathrm{rad}=\frac{\pi}{18} \mathrm{rad}$
(c) $22.5^{\circ}=\frac{22.5 \times \frac{\pi}{180} \mathrm{rad}}{}=\frac{\pi}{8} \mathrm{rad}$ 8
(d) $30^{\circ}=30 \times \frac{\pi}{180} \mathrm{rad}=\frac{\pi}{6} \mathrm{rad}$
(e) $45^{\circ}=45 \times \frac{\pi}{180} \mathrm{rad}=\frac{\pi}{4} \mathrm{rad}$
(f) $60^{\circ}=2 \times$ answer to (d) $=\frac{\pi}{3} \mathrm{rad}$
(g) $75^{\circ}=75^{5} \times \frac{\pi}{180} \mathrm{rad}=\frac{5 \pi}{12} \mathrm{rad}$ 12
(h) $80^{\circ}=80 \times \frac{\pi}{180} \mathrm{rad}=\frac{4 \pi}{9} \mathrm{rad}$
(i) $112.5^{\circ}=5 \times$ answer to (c) $=\frac{5 \pi}{8} \mathrm{rad}$
(j) $120^{\circ}=2 \times$ answer to (f) $=\frac{2 \pi}{3} \mathrm{rad}$
(k) $135^{\circ}=3 \times$ answer to (e) $=\frac{3 \pi}{4} \mathrm{rad}$
(1) $200^{\circ}=200 \times \frac{\pi}{180} \mathrm{rad}=\frac{10 \pi}{9} \mathrm{rad}$
(m) $240^{\circ}=2 \times$ answer to $(\mathrm{j})=\frac{4 \pi}{3} \mathrm{rad}$
(n) $270^{\circ}=3 \times 90^{\circ}=\frac{3 \pi}{2} \mathrm{rad}$
(o) $315^{\circ}=180^{\circ}+135^{\circ}=\pi+\frac{3 \pi}{4}=\frac{7 \pi}{4} \mathrm{rad}$
(p) $330^{\circ}=11 \times 30^{\circ}=\frac{11 \pi}{6} \mathrm{rad}$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications
Exercise A, Question 5

Question:

Use your calculator to convert the following angles to radians, giving your answers to 3 significant figures:
(a) 50°
(b) 75°
(c) 100°
(d) 160°
(e) 230°
(f) 320°

Solution:

(a) $50^{\circ}=0.8726 \quad \ldots \quad$ c $=0.873^{\mathrm{c}}$ (3 s.f.)
(b) $75^{\circ}=1.3089 \quad \ldots \quad$ c $=1.31^{\mathrm{c}}(3$ s.f. $)$
(c) $100^{\circ}=1.7453 \quad \ldots \quad{ }^{\text {c }}=1.75^{c}(3$ s.f. $)$
(d) $160^{\circ}=2.7925 \quad \ldots \quad{ }^{\text {c }}=2.79^{c}(3$ s.f. $)$
(e) $230^{\circ}=4.01425 \quad \ldots \quad{ }^{\mathrm{c}} \quad=4.01^{\mathrm{c}}(3$ s.f. $)$
(f) $320^{\circ}=5.585 \quad \ldots \quad{ }^{\mathrm{c}}=5.59^{\mathrm{c}}(3$ s.f. $)$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications
Exercise B, Question 1

Question:

An arc $A B$ of a circle, centre O and radius $r \mathrm{~cm}$, subtends an angle θ radians at O. The length of $A B$ is $l \mathrm{~cm}$.
(a) Find l when
(i) $r=6, \theta=0.45$
(ii) $r=4.5, \theta=0.45$
(iii) $r=20, \theta=\frac{3}{8} \pi$
(b) Find r when
(i) $l=10, \theta=0.6$
(ii) $l=1.26, \theta=0.7$
(iii) $l=1.5 \pi, \theta=\frac{5}{12} \pi$
(c) Find θ when
(i) $l=10, r=7.5$
(ii) $l=4.5, r=5.625$
(iii) $l=\sqrt{ } 12, r=\sqrt{ } 3$

Solution:

(a) Using $l=r \theta$
(i) $l=6 \times 0.45=2.7$
(ii) $l=4.5 \times 0.45=2.025$
(iii) $l=20 \times \frac{3}{8} \pi=7.5 \pi$ (23.6 3 s.f.)
(b) Using $r=\frac{l}{\theta}$
(i) $r=\frac{10}{0.6}=16 \frac{2}{3}$
(ii) $r=\frac{1.26}{0.7}=1.8$
(iii) $r=\frac{1.5 \pi}{\frac{5}{12} \pi}=1.5 \times \frac{12}{5}=\frac{18}{5}=3 \frac{3}{5}$
(c) $\operatorname{Using} \theta=\frac{l}{r}$
(i) $\theta=\frac{10}{7.5}=1 \frac{1}{3}$
(ii) $\theta=\frac{4.5}{5.625}=0.8$
(iii) $\theta=\frac{\sqrt{ } 12}{\sqrt{ } 3}=\frac{2 \sqrt{ } 3}{\sqrt{ } 3}=2$

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 2

Question:

A minor arc $A B$ of a circle, centre O and radius 10 cm , subtends an angle x at O. The major arc $A B$ subtends an angle $5 x$ at O. Find, in terms of π, the length of the minor $\operatorname{arc} A B$.

Solution:

The total angle at the centre is $6 x^{\mathrm{c}}$ so
$6 x=2 \pi$
$x=\frac{\pi}{3}$

Using $l=r \theta$ to find minor $\operatorname{arc} A B$
$l=10 \times \frac{\pi}{3}=\frac{10 \pi}{3} \mathrm{~cm}$

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 3

Question:

An $\operatorname{arc} A B$ of a circle, centre O and radius 6 cm , has length $l \mathrm{~cm}$. Given that the chord $A B$ has length 6 cm , find the value of l, giving your answer in terms of π.

Solution:

$\triangle \mathrm{OAB}$ is equilateral, so $\angle \mathrm{AOB}=\frac{\pi}{3} \mathrm{rad}$.
Using $l=r \theta$
$l=6 \times \frac{\pi}{3}=2 \pi$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 4

Question:

The sector of a circle of radius $\sqrt{ } 10 \mathrm{~cm}$ contains an angle of $\sqrt{ } 5$ radians, as shown in the diagram. Find the length of the arc, giving your answer in the form $p \sqrt{ } q \mathrm{~cm}$, where p and q are integers.

Solution:

Using $l=r \theta$ with $r=\sqrt{ } 10 \mathrm{~cm}$ and $\theta=\sqrt{ } 5^{c}$
$l=\sqrt{ } 10 \times \sqrt{ } 5=\sqrt{ } 50=\sqrt{25 \times 2}=5 \sqrt{ } 2 \mathrm{~cm}$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 5

Question:

Referring to the diagram, find:

(a) The perimeter of the shaded region when $\theta=0.8$ radians.
(b) The value of θ when the perimeter of the shaded region is 14 cm .

Solution:

(a) Using $l=r \theta$,
the smaller arc $=3 \times 0.8=2.4 \mathrm{~cm}$
the larger arc $=(3+2) \times 0.8=4 \mathrm{~cm}$
Perimeter $=2.4 \mathrm{~cm}+2 \mathrm{~cm}+4 \mathrm{~cm}+2 \mathrm{~cm}=10.4 \mathrm{~cm}$
(b) The smaller arc $=3 \theta \mathrm{~cm}$, the larger arc $=5 \theta \mathrm{~cm}$.

So perimeter $=(3 \theta+5 \theta+2+2) \mathrm{cm}$.
As perimeter is 14 cm ,
$8 \theta+4=14$
$8 \theta=10$
$\theta=\frac{10}{8}=1 \frac{1}{4}$

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 6

Question:

A sector of a circle of radius $r \mathrm{~cm}$ contains an angle of 1.2 radians. Given that the sector has the same perimeter as a square of area $36 \mathrm{~cm}^{2}$, find the value of r.

Solution:

Using $l=r \theta$, the arc length $=1.2 r \mathrm{~cm}$.
The area of the square $=36 \mathrm{~cm}^{2}$, so each side $=6 \mathrm{~cm}$ and the perimeter is, therefore, 24 cm .
The perimeter of the sector $=$ arc length $+2 r \mathrm{~cm}=(1.2 r+2 r) \mathrm{cm}=3.2 r \mathrm{~cm}$.
The perimeter of square $=$ perimeter of sector so
$24=3.2 r$
$r=\frac{24}{3.2}=7.5$

© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 7

Question:

A sector of a circle of radius 15 cm contains an angle of θ radians. Given that the perimeter of the sector is 42 cm , find the value of θ.

Solution:

Using $l=r \theta$, the arc length of the sector $=15 \theta \mathrm{~cm}$.
So the perimeter $=(15 \theta+30) \mathrm{cm}$.
As the perimeter $=42 \mathrm{~cm}$
$15 \theta+30=42$

$$
\Rightarrow \quad 15 \theta=12
$$

$$
\Rightarrow \quad \theta=\frac{12}{15}=\frac{4}{5}
$$

© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 8

Question:

In the diagram $A B$ is the diameter of a circle, centre O and radius 2 cm . The point C is on the circumference such that $\angle \mathrm{COB}=\frac{2}{3} \pi$ radians.

(a) State the value, in radians, of $\angle \mathrm{COA}$.

The shaded region enclosed by the chord $A C$, arc $C B$ and $A B$ is the template for a brooch.
(b) Find the exact value of the perimeter of the brooch.

Solution:

(a) $\angle \mathrm{COA}=\pi-\frac{2}{3} \pi=\frac{\pi}{3} \mathrm{rad}$
(b) The perimeter of the brooch $=\mathrm{AB}+\operatorname{arc} \mathrm{BC}+$ chord AC .
$\mathrm{AB}=4 \mathrm{~cm}$
$\operatorname{arc} \mathrm{BC}=r \theta$ with $r=2 \mathrm{~cm}$ and $\theta=\frac{2}{3} \pi$ so
$\operatorname{arc} \mathrm{BC}=2 \times \frac{2}{3} \pi=\frac{4}{3} \pi \mathrm{~cm}$
As $\angle \mathrm{COA}=\frac{\pi}{3}\left(60^{\circ}\right), \triangle \mathrm{COA}$ is equilateral, so
chord $\mathrm{AC}=2 \mathrm{~cm}$
The perimeter $=4 \mathrm{~cm}+\frac{4}{3} \pi \mathrm{~cm}+2 \mathrm{~cm}=\left(6+\frac{4}{3} \pi\right) \mathrm{cm}$

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 9

Question:

The points A and B lie on the circumference of a circle with centre O and radius 8.5 cm . The point C lies on the major arc $A B$. Given that $\angle \mathrm{ACB}=0.4$ radians, calculate the length of the minor arc $A B$.

Solution:

Using the circle theorem:
Angle subtended at the centre of the circle $=2 \times$ angle subtended at the circumference
$\angle \mathrm{AOB}=2 \angle \mathrm{ACB}=0.8^{\mathrm{c}}$
Using $l=r \theta$
length of minor arc $\mathrm{AB}=8.5 \times 0.8 \mathrm{~cm}=6.8 \mathrm{~cm}$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise B, Question 10

Question:

In the diagram $O A B$ is a sector of a circle, centre O and radius $R \mathrm{~cm}$, and $\angle \mathrm{AOB}=2 \theta$ radians. A circle, centre C and radius $r \mathrm{~cm}$, touches the $\operatorname{arc} A B$ at T, and touches $O A$ and $O B$ at D and E respectively, as shown.

(a) Write down, in terms of R and r, the length of $O C$.
(b) Using $\triangle \mathrm{OCE}$, show that $R \sin \theta=r(1+\sin \theta)$.
(c) Given that $\sin \theta=\frac{3}{4}$ and that the perimeter of the sector $O A B$ is 21 cm , find r, giving your answer to 3 significant figures.

Solution:

(a) $\mathrm{OC}=\mathrm{OT}-\mathrm{CT}=R \mathrm{~cm}-r \mathrm{~cm}=(R-r) \mathrm{cm}$
(b) In $\triangle \mathrm{OCE}, \angle \mathrm{CEO}=90^{\circ}$ (radius perpendicular to tangent)
and $\angle \mathrm{COE}=\theta(O T$ bisects $\angle \mathrm{AOB})$
Using $\sin \angle \mathrm{COE}=\frac{\mathrm{CE}}{\mathrm{OC}}$
$\sin \theta=\frac{r}{R-r}$
$(R-r) \sin \theta=r$
$R \sin \theta-r \sin \theta=r$
$R \sin \theta=r+r \sin \theta$
$R \sin \theta=r(1+\sin \theta)$
(c) As $\sin \theta=\frac{3}{4}, \frac{3}{4} R=\frac{7}{4} r \quad \Rightarrow \quad R=\frac{7}{3} r$
and $\theta=\sin ^{-1} \quad \frac{3}{4}=0.84806 \quad \ldots \quad$ c
The perimeter of the sector $=2 R+2 R \theta=2 R(1+\theta)=\frac{14}{3} r\left(\begin{array}{ll}1.84806 & \ldots\end{array}\right)$
So $21=\frac{14}{3} r\left(\begin{array}{ll}1.84806 & \ldots\end{array}\right)$

$$
\left.\Rightarrow \quad r=\frac{21 \times 3}{14(1.84806 \ldots)}=\frac{9}{2(1.84806 \ldots)}=2.43 \text { (3 s.f. }\right)
$$

© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 1

Question:

(Note: give non-exact answers to 3 significant figures.)
Find the area of the shaded sector in each of the following circles with centre C. Leave your answer in terms of π, where appropriate.
(a)

(b)

(c)

(d)

(e)

(f)

Solution:

(a)

Area of shaded sector $=\frac{1}{2} \times 8^{2} \times 0.6=19.2 \mathrm{~cm}^{2}$
(b)

Area of shaded sector $=\frac{1}{2} \times 9^{2} \times \frac{\pi}{6}=\frac{27 \pi}{4} \mathrm{~cm}^{2}=6.75 \pi \mathrm{~cm}^{2}$
(c)

Angle subtended at C by major arc $=2 \pi-\frac{\pi}{5}=\frac{9 \pi}{5} \mathrm{rad}$
Area of shaded sector $=\frac{1}{2} \times 1.2^{2} \times \frac{9 \pi}{5}=1.296 \pi \mathrm{~cm}^{2}$
(d)

Angle subtended at C by major arc $=(2 \pi-1.5) \quad \mathrm{rad}$
Area of shaded sector $=\frac{1}{2} \times 4^{2} \times(2 \pi-1.5)=38.3 \mathrm{~cm}^{2}(3$ s.f. $)$
(e)

The triangle is equilateral so angle at C in the triangle is $\frac{\pi}{3} \mathrm{rad}$.
Angle subtended at C by shaded sector $=\pi-\frac{\pi}{3} \mathrm{rad}=\frac{2 \pi}{3} \mathrm{rad}$
Area of shaded sector $=\frac{1}{2} \times 4^{2} \times \frac{2 \pi}{3}=\frac{16}{3} \pi \mathrm{~cm}^{2}$
(f)

As triangle is isosceles, angle at C in shaded sector is 0.4^{c}.
Area of shaded sector $=\frac{1}{2} \times 5^{2} \times 0.4=5 \mathrm{~cm}^{2}$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level
Radian measure and its applications
Exercise C, Question 2

Question:

(Note: give non-exact answers to 3 significant figures.)
For the following circles with centre C, the area A of the shaded sector is given. Find the value of x in each case.
(a)

$$
\mathrm{A}=12 \mathrm{~cm}^{2}
$$

(b)

(c)

Solution:

(a)

Area of shaded sector $=\frac{1}{2} \times x^{2} \times 1.2=0.6 x^{2} \mathrm{~cm}^{2}$
So $0.6 x^{2}=12$

$$
\begin{array}{ll}
\Rightarrow & x^{2}=20 \\
\Rightarrow & x=4.47 \text { (3 s.f.) }
\end{array}
$$

(b)

Area of shaded sector $=\frac{1}{2} \times x^{2} \times\left(2 \pi-\frac{\pi}{12}\right)=\frac{1}{2} x^{2} \times \frac{23 \pi}{12} \mathrm{~cm}^{2}$
So $\quad 15 \pi=\frac{23}{24} \pi x^{2}$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}=\frac{24 \times 15}{23} \\
& \Rightarrow \quad x=3.96(3 \text { s.f. })
\end{aligned}
$$

(c)

Area of shaded sector $=\frac{1}{2} \times 4.5^{2} \times x \mathrm{~cm}^{2}$
So $20=\frac{1}{2} \times 4.5^{2} x$

Heinemann Solutionbank: Core Maths 2 C2

$$
\Rightarrow \quad x=\frac{40}{4.5^{2}}=1.98 \text { (3 s.f.) }
$$

© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications
Exercise C, Question 3

Question:

(Note: give non-exact answers to 3 significant figures.)

The arc $A B$ of a circle, centre O and radius 6 cm , has length 4 cm .
Find the area of the minor sector $A O B$.

Solution:

Using $l=r \theta$
$4=6 \theta$
$\theta=\frac{2}{3}$
So area of sector $=\frac{1}{2} \times 6^{2} \times \frac{2}{3}=12 \mathrm{~cm}^{2}$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 4

Question:

(Note: give non-exact answers to 3 significant figures.)
The chord $A B$ of a circle, centre O and radius 10 cm , has length 18.65 cm and subtends an angle of θ radians at O.
(a) Show that $\theta=2.40$ (to 3 significant figures).
(b) Find the area of the minor sector $A O B$.

Solution:

(a)

Using the line of symmetry in the isosceles triangle $O A B$
$\sin \frac{\theta}{2}=\frac{9.325}{10}$
$\frac{\theta}{2}=\sin ^{-1}\left(\frac{9.325}{10}\right)$ (Use radian mode)
$\theta=2 \sin ^{-1}\left(\frac{9.325}{10}\right)=2.4025 \quad \ldots \quad=2.40(3$ s.f. $)$
(b) Area of minor sector $A O B=\frac{1}{2} \times 10^{2} \times \theta=120 \mathrm{~cm}^{2}$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 5

Question:

(Note: give non-exact answers to 3 significant figures.)
The area of a sector of a circle of radius 12 cm is $100 \mathrm{~cm}^{2}$.
Find the perimeter of the sector.

Solution:

Using area of sector $=\frac{1}{2} r^{2} \theta$
$100=\frac{1}{2} \times 12^{2} \theta$

$$
\Rightarrow \quad \theta=\frac{100}{72}=\frac{25}{18} \mathrm{c}
$$

The perimeter of the sector $=12+12+12 \theta=12(2+\theta)=12 \times \frac{61}{18}=\frac{122}{3}=40 \frac{2}{3} \mathrm{~cm}$

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 6

Question:

(Note: give non-exact answers to 3 significant figures.)

The arc $A B$ of a circle, centre O and radius $r \mathrm{~cm}$, is such that $\angle \mathrm{AOB}=0.5$ radians. Given that the perimeter of the minor sector $A O B$ is 30 cm :
(a) Calculate the value of r.
(b) Show that the area of the minor sector $A O B$ is $36 \mathrm{~cm}^{2}$.
(c) Calculate the area of the segment enclosed by the chord $A B$ and the minor arc $A B$.

Solution:

(a) The perimeter of minor sector $\mathrm{AOB}=r+r+0.5 r=2.5 r \mathrm{~cm}$

$$
\text { So } 30=2.5 r
$$

$$
\Rightarrow \quad r=\frac{30}{2.5}=12
$$

(b) Area of minor sector $=\frac{1}{2} \times r^{2} \times \theta=\frac{1}{2} \times 12^{2} \times 0.5=36 \mathrm{~cm}^{2}$
(c) Area of segment
$=\frac{1}{2} r^{2}(\theta-\sin \theta)$
$=\frac{1}{2} \times 12^{2}(0.5-\sin 0.5)$
$=72(0.5-\sin 0.5)$
$=1.48 \mathrm{~cm}^{2}$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 7

Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, $A B$ is the diameter of a circle of radius $r \mathrm{~cm}$ and $\angle \mathrm{BOC}=\theta$ radians. Given that the area of $\triangle \mathrm{COB}$ is equal to that of the shaded segment, show that $\theta+2 \sin \theta=\pi$.

Solution:

Using the formula
area of a triangle $=\frac{1}{2} \mathrm{ab} \sin C$
area of $\triangle \mathrm{COB}=\frac{1}{2} r^{2} \sin \theta(1)$
$\angle \mathrm{AOC}=(\pi-\theta) \mathrm{rad}$
Area of shaded segment $=\frac{1}{2} r^{2}[(\pi-\theta)-\sin (\pi-\theta)]$
As (1) and (2) are equal
$\frac{1}{2} r^{2} \sin \theta=\frac{1}{2} r^{2}[\pi-\theta-\sin (\pi-\theta)]$
$\sin \theta=\pi-\theta-\sin (\pi-\theta)$
and as $\sin (\pi-\theta)=\sin \theta$
$\sin \theta=\pi-\theta-\sin \theta$
So $\theta+2 \sin \theta=\pi$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 8

Question:

(Note: give non-exact answers to 3 significant figures.)
In the diagram, $B C$ is the arc of a circle, centre O and radius 8 cm . The points A and D are such that $\mathrm{OA}=\mathrm{OD}=5 \mathrm{~cm}$. Given that $\angle \mathrm{BOC}=1.6$ radians, calculate the area of the shaded region.

Solution:

Area of sector $\mathrm{OBC}=\frac{1}{2} r^{2} \theta$ with $r=8 \mathrm{~cm}$ and $\theta=1.6^{\mathrm{c}}$
Area of sector $\mathrm{OBC}=\frac{1}{2} \times 8^{2} \times 1.6=51.2 \mathrm{~cm}^{2}$
Using area of triangle formula

Area of $\triangle \mathrm{OAD}=\frac{1}{2} \times 5 \times 5 \times \sin 1.6^{\mathrm{c}}=12.495 \mathrm{~cm}^{2}$
Area of shaded region $=51.2-12.495=38.7 \mathrm{~cm}^{2}(3$ s.f. $)$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 9

Question:

(Note: give non-exact answers to 3 significant figures.)
In the diagram, $A B$ and $A C$ are tangents to a circle, centre O and radius 3.6 cm . Calculate the area of the shaded region, given that $\angle \mathrm{BOC}=\frac{2}{3} \pi$ radians.

Solution:

In right-angled $\triangle O B A: \tan \frac{\pi}{3}=\frac{\mathrm{AB}}{3.6}$

$$
\Rightarrow \quad \mathrm{AB}=3.6 \tan \frac{\pi}{3}
$$

Area of $\triangle \mathrm{OBA}=\frac{1}{2} \times 3.6 \times 3.6 \times \tan \frac{\pi}{3}$
So area of quadrilateral $\mathrm{OBAC}=3.6^{2} \times \tan \quad \frac{\pi}{3}=22.447 \quad \ldots \quad \mathrm{~cm}^{2}$

Area of sector $=\frac{1}{2} \times 3.6^{2} \times \frac{2}{3} \pi=13.57 \quad \ldots \quad \mathrm{~cm}^{2}$

Area of shaded region

Heinemann Solutionbank: Core Maths 2 C2
Page 2 of 2
$=$ area of quadrilateral $O B A C-$ area of sector $O B C$
$=8.88 \mathrm{~cm}^{2}$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 10

Question:

(Note: give non-exact answers to 3 significant figures.)
A chord $A B$ subtends an angle of θ radians at the centre O of a circle of radius 6.5 cm . Find the area of the segment enclosed by the chord $A B$ and the minor arc $A B$, when:
(a) $\theta=0.8$
(b) $\theta=\frac{2}{3} \pi$
(c) $\theta=\frac{4}{3} \pi$

Solution:

(a) Area of sector $\mathrm{OAB}=\frac{1}{2} \times 6.5^{2} \times 0.8$

Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times 6.5^{2} \times \sin 0.8$
Area of segment $=\frac{1}{2} \times 6.5^{2} \times 0.8-\frac{1}{2} \times 6.5^{2} \times \sin 0.8=1.75 \mathrm{~cm}^{2}(3$ s.f. $)$
(b) Area of segment $=\frac{1}{2} \times 6.5^{2}\left(\frac{2}{3} \pi-\sin \frac{2}{3} \pi\right)=25.9 \mathrm{~cm}^{2}(3$ s.f. $)$
(c) Area of segment $=\frac{1}{2} \times 6.5^{2}\left(\frac{2}{3} \pi-\sin \frac{2}{3} \pi\right)=25.9 \mathrm{~cm}^{2}(3$ s.f. $)$

Diagram shows why $\frac{2}{3} \pi$ is required.

© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 11

Question:

(Note: give non-exact answers to 3 significant figures.)
An arc $A B$ subtends an angle of 0.25 radians at the circumference of a circle, centre O and radius 6 cm . Calculate the area of the minor sector $O A B$.

Solution:

Using the circle theorem: angle at the centre $=2 \times$ angle at circumference $\angle \mathrm{AOB}=0.5^{\circ}$
Area of minor sector $\mathrm{AOB}=\frac{1}{2} \times 6^{2} \times 0.5=9 \mathrm{~cm}^{2}$

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 12

Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, $A D$ and $B C$ are arcs of circles with centre O, such that $O A=O D=r \mathrm{~cm}, A B=D C=8 \mathrm{~cm}$ and $\angle B O C=\theta$ radians.

(a) Given that the area of the shaded region is $48 \mathrm{~cm}^{2}$, show that
$r=\frac{6}{\theta}-4$.
(b) Given also that $r=10 \theta$, calculate the perimeter of the shaded region.

Solution:

(a)

Area of larger sector $=\frac{1}{2}(r+8)^{2} \theta \mathrm{~cm}^{2}$
Area of smaller sector $=\frac{1}{2} r^{2} \theta \mathrm{~cm}^{2}$
Area of shaded region
$=\frac{1}{2}(r+8)^{2} \theta-\frac{1}{2} r^{2} \theta \mathrm{~cm}^{2}$
$=\frac{1}{2} \theta\left[\left(r^{2}+16 r+64\right)-r^{2}\right] \mathrm{cm}^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \theta(16 r+64) \mathrm{cm}^{2} \\
& =8 \theta(r+4) \mathrm{cm}^{2} \\
& \text { So } 48=8 \theta(r+4) \\
& \quad \Rightarrow \quad 6=r \theta+4 \theta \quad * \\
& \quad \Rightarrow \quad r \theta=6-4 \theta \\
& \quad \Rightarrow \quad r=\frac{6}{\theta}-4
\end{aligned}
$$

(b) As $r=10 \theta$, using *
$10 \theta^{2}+4 \theta-6=0$
$5 \theta^{2}+2 \theta-3=0$
$(5 \theta-3)(\theta+1)=0$
So $\theta=\frac{3}{5}$ and $r=10 \theta=6$
Perimeter of shaded region $=[r \theta+8+(r+8) \theta+8] \mathrm{cm}$
So perimeter $=\frac{18}{5}+8+\frac{42}{5}+8=28 \mathrm{~cm}$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 13

Question:

(Note: give non-exact answers to 3 significant figures.)

A sector of a circle of radius 28 cm has perimeter $P \mathrm{~cm}$ and area $A \mathrm{~cm}^{2}$.
Given that $A=4 P$, find the value of P.

Solution:

The area of the sector $=\frac{1}{2} \times 28^{2} \times \theta=392 \theta \mathrm{~cm}^{2}=A \mathrm{~cm}^{2}$
The perimeter of the sector $=(28 \theta+56) \mathrm{cm}=P \mathrm{~cm}$
As $A=4 P$
$392 \theta=4(28 \theta+56)$
$98 \theta=28 \theta+56$
$70 \theta=56$
$\theta=\frac{56}{70}=0.8$
$P=28 \theta+56=28(0.8)+56=78.4$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 14

Question:

(Note: give non-exact answers to 3 significant figures.)
The diagram shows a triangular plot of land. The sides $A B, B C$ and $C A$ have lengths $12 \mathrm{~m}, 14 \mathrm{~m}$ and 10 m respectively. The lawn is a sector of a circle, centre A and radius 6 m .

(a) Show that $\angle \mathrm{BAC}=1.37$ radians, correct to 3 significant figures.
(b) Calculate the area of the flowerbed.

Solution:

(a) Using cosine rule
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 \mathrm{bc}}$
$\cos A=\frac{10^{2}+12^{2}-14^{2}}{2 \times 10 \times 12}=0.2$
$\begin{array}{ll}A=\cos ^{-1} & (0.2) \quad \text { (use in radian mode) } \\ A=1.369 & \ldots\end{array}$
(b) Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 12 \times 10 \times \sin A=58.787 \quad \ldots \quad \mathrm{~m}^{2}$

Area of sector (lawn) $=\frac{1}{2} \times 6^{2} \times A=24.649 \quad \ldots \quad \mathrm{~m}^{2}$
Area of flowerbed $=$ area of $\triangle A B C-$ area of sector $=34.1 \mathrm{~m}^{2}(3$ s.f. $)$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 1

Question:

Triangle $A B C$ is such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$ and $\angle \mathrm{ABC}=90^{\circ}$. An arc of a circle, centre A and radius 5 cm , cuts $A C$ at D.
(a) State, in radians, the value of $\angle \mathrm{BAC}$.
(b) Calculate the area of the region enclosed by $B C, D C$ and the $\operatorname{arc} B D$.

Solution:

(a) In the right-angled $\triangle \mathrm{ABC}$
$\cos \angle \mathrm{BAC}=\frac{5}{10}=\frac{1}{2}$
$\angle \mathrm{BAC}=\frac{\pi}{3}$
(b) Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 5 \times 10 \times \sin \frac{\pi}{3}=21.650 \quad \ldots \quad \mathrm{~cm}^{2}$

Area of sector $\mathrm{DAB}=\frac{1}{2} \times 5^{2} \times \frac{\pi}{3}=13.089 \quad \ldots \quad \mathrm{~cm}^{2}$
Area of shaded region $=$ area of $\triangle \mathrm{ABC}-$ area of sector $D A B=8.56 \mathrm{~cm}^{2}(3$ s.f. $)$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 2

Question:

The diagram shows a minor sector $O M N$ of a circle centre O and radius $r \mathrm{~cm}$. The perimeter of the sector is 100 cm and the area of the sector is $A \mathrm{~cm}^{2}$.

(a) Show that $A=50 r-r^{2}$.
(b) Given that r varies, find:
(i) The value of r for which A is a maximum and show that A is a maximum.
(ii) The value of \angle MON for this maximum area.
(iii) The maximum area of the sector $O M N$.
[E]
Solution:

(a) Let $\angle \mathrm{MON}=\theta^{\mathrm{c}}$

Perimeter of sector $=(2 r+r \theta) \mathrm{cm}$
So $100=2 r+r \theta$
$\Rightarrow r \theta=100-2 r$
$\Rightarrow \quad \theta=\frac{100}{r}-2 *$
The area of the sector $=A \mathrm{~cm}^{2}=\frac{1}{2} r^{2} \theta \mathrm{~cm}^{2}$
So $A=\frac{1}{2} r^{2}\left(\frac{100}{r}-2\right)$
$\Rightarrow \quad A=50 r-r^{2}$
(b) (i) $A=-\left(r^{2}-50 r\right)=-\left[(r-25)^{2}-625\right]=625-(r-25)^{2}$

The maximum value occurs when $r=25$, as for all other values of r something is subtracted from 625 .
(ii) Using *, when $r=25, \theta=\frac{100}{25}-2=2^{\text {c }}$
(iii) Maximum area $=625 \mathrm{~cm}^{2}$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 3

Question:

The diagram shows the triangle $O C D$ with $\mathrm{OC}=\mathrm{OD}=17 \mathrm{~cm}$ and $\mathrm{CD}=30 \mathrm{~cm}$. The mid-point of $C D$ is M. With centre M, a semicircular arc A_{1} is drawn on $C D$ as diameter. With centre O and radius 17 cm , a circular arc A_{2} is drawn from C to D. The shaded region R is bounded by the arcs A_{1} and A_{2}. Calculate, giving answers to 2 decimal places:

(a) The area of the triangle $O C D$.
(b) The angle $C O D$ in radians.
(c) The area of the shaded region R.
[E]

Solution:

(a) Using Pythagoras' theorem to find $O M$:
$O M^{2}=17^{2}-15^{2}=64$

$$
\Rightarrow \quad \mathrm{OM}=8 \mathrm{~cm}
$$

Area of $\triangle \mathrm{OCD}=\frac{1}{2} \mathrm{CD} \times \mathrm{OM}=\frac{1}{2} \times 30 \times 8=120 \mathrm{~cm}^{2}$
(b) In $\triangle \mathrm{OCM}: \sin \angle \mathrm{COM}=\frac{15}{17} \quad \Rightarrow \quad \angle \mathrm{COM}=1.0808 \quad \ldots$

So $\angle \mathrm{COD}=2 \times \angle \mathrm{COM}=2.16^{\mathrm{c}}$ (2 d.p.)
(c) Area of shaded region $R=$ area of semicircle - area of segment $C D A_{2}$

Area of segment $=$ area of sector $O C D-$ area of sector $\triangle O C D$
$=\frac{1}{2} \times 17^{2}(\angle \mathrm{COD}-\sin \angle \mathrm{COD})$ (angles in radians)
$=192.362 \quad \ldots \quad \mathrm{~cm}^{2}$ (use at least 3 d.p.)
Area of semicircle $=\frac{1}{2} \times \pi \times 15^{2}=353.429 \quad \ldots \quad \mathrm{~cm}^{2}$
So area of shaded region $R=353.429 \ldots-192.362 \ldots=161.07 \mathrm{~cm}^{2}$ (2 d.p.)
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 4

Question:

The diagram shows a circle, centre O, of radius 6 cm . The points A and B are on the circumference of the circle. The area of the shaded major sector is $80 \mathrm{~cm}^{2}$. Given that $\angle \mathrm{AOB}=\theta$ radians, where $0<\theta<\pi$, calculate:

(a) The value, to 3 decimal places, of θ.
(b) The length in cm , to 2 decimal places, of the minor arc $A B$.
[E]

Solution:

(a) Reflex angle $\mathrm{AOB}=(2 \pi-\theta) \mathrm{rad}$

Area of shaded sector $=\frac{1}{2} \times 6^{2} \times(2 \pi-\theta)=36 \pi-18 \theta \mathrm{~cm}^{2}$
So $80=36 \pi-18 \theta$
$\Rightarrow \quad 18 \theta=36 \pi-80$
$\Rightarrow \quad \theta=\frac{36 \pi-80}{18}=1.839$ (3 d.p.)

Heinemann Solutionbank: Core Maths 2 C2
Page 2 of 2
(b) Length of minor arc $\mathrm{AB}=6 \theta=11.03 \mathrm{~cm}$ (2 d.p.)
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 5

Question:

The diagram shows a sector $O A B$ of a circle, centre O and radius $r \mathrm{~cm}$. The length of the $\operatorname{arc} A B$ is $p \mathrm{~cm}$ and $\angle \mathrm{AOB}$ is θ radians.

(a) Find θ in terms of p and r.
(b) Deduce that the area of the sector is $\frac{1}{2} \mathrm{pr} \mathrm{cm}^{2}$.

Given that $r=4.7$ and $p=5.3$, where each has been measured to 1 decimal place, find, giving your answer to 3 decimal places:
(c) The least possible value of the area of the sector.
(d) The range of possible values of θ.
[E]
Solution:

(a) Using $l=r \theta \quad \Rightarrow \quad p=r \theta$

So $\theta=\frac{p}{r}$
(b) Area of sector $=\frac{1}{2} r^{2} \theta=\frac{1}{2} r^{2} \times \frac{p}{r}=\frac{1}{2} \mathrm{pr} \mathrm{cm}^{2}$
(c) $4.65 \leq r<4.75,5.25 \leq p<5.35$

Least value for area of sector $=\frac{1}{2} \times 5.25 \times 4.65=12.207 \mathrm{~cm}^{2}$ (3 d.p.)
(Note: Lowest is 12.20625 , so 12.207 should be given.)
(d) Max value of $\theta=\frac{\max p}{\min r}=\frac{5.35}{4.65}=1.1505 \quad \ldots$

So give 1.150 (3 d.p.)
Min value of $\theta=\frac{\min p}{\max r}=\frac{5.25}{4.75}=1.10526$
So give 1.106 (3 d.p.)
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 6

Question:

The diagram shows a circle centre O and radius 5 cm . The length of the minor arc $A B$ is 6.4 cm .

(a) Calculate, in radians, the size of the acute angle $A O B$.

The area of the minor sector $A O B$ is $R_{1} \mathrm{~cm}^{2}$ and the area of the shaded major sector $A O B$ is $R_{2} \mathrm{~cm}^{2}$.
(b) Calculate the value of R_{1}.
(c) Calculate $R_{1}: R_{2}$ in the form 1: p, giving the value of p to 3 significant figures.
[E]

Solution:

(a) Using $l=r \theta, 6.4=5 \theta$
$\Rightarrow \quad \theta=\frac{6.4}{5}=1.28^{\mathrm{c}}$
(b) Using area of sector $=\frac{1}{2} r^{2} \theta$
$R_{1}=\frac{1}{2} \times 5^{2} \times 1.28=16$
(c) $R_{2}=$ area of circle $-R_{1}=\pi 5^{2}-16=62.5398 \quad \ldots$

So $\frac{R_{1}}{R_{2}}=\frac{16}{62.5398 \ldots}=\frac{1}{3.908 \ldots}=\frac{1}{p}$ $\Rightarrow \quad p=3.91$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 7

Question:

Shape X

Shape Y

The diagrams show the cross-sections of two drawer handles.
Shape X is a rectangle $A B C D$ joined to a semicircle with $B C$ as diameter. The length $\mathrm{AB}=d \mathrm{~cm}$ and $\mathrm{BC}=2 d \mathrm{~cm}$. Shape Y is a sector $O P Q$ of a circle with centre O and radius $2 d \mathrm{~cm}$. Angle $P O Q$ is θ radians.
Given that the areas of shapes X and Y are equal:
(a) Prove that $\theta=1+\frac{1}{4} \pi$.

Using this value of θ, and given that $d=3$, find in terms of π :
(b) The perimeter of shape X.
(c) The perimeter of shape Y.
(d) Hence find the difference, in mm , between the perimeters of shapes X and Y. [E]

Solution:

Shape X

Shape Y
(a) Area of shape X
$=$ area of rectangle + area of semicircle
$=2 d^{2}+\frac{1}{2} \pi d^{2} \mathrm{~cm}^{2}$
Area of shape $Y=\frac{1}{2}(2 d)^{2} \theta=2 d^{2} \theta \mathrm{~cm}^{2}$
As $X=Y: \quad 2 d^{2}+\frac{1}{2} \pi d^{2}=2 d^{2} \theta$
Divide by $2 d^{2}: \quad 1+\frac{\pi}{4}=\theta$
(b) Perimeter of X
$=(d+2 d+d+\pi d) \mathrm{cm}$ with $d=3$
$=(3 \pi+12) \mathrm{cm}$
(c) Perimeter of Y
$=(2 d+2 d+2 d \theta) \mathrm{cm}$ with $d=3$ and $\theta=1+\frac{\pi}{4}$
$=12+6\left(1+\frac{\pi}{4}\right)$
$=\left(18+\frac{3 \pi}{2}\right) \mathrm{cm}$
(d) Difference (in mm)
$=\left[\left(18+\frac{3 \pi}{2}\right)-(3 \pi+12)\right] \times 10$
$=10\left(6-\frac{3 \pi}{2}\right)$
$=12.87 \mathrm{~m}$
$=12.9$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 8

Question:

The diagram shows a circle with centre O and radius 6 cm . The chord $P Q$ divides the circle into a minor segment R_{1} of area $A_{1} \mathrm{~cm}^{2}$ and a major segment R_{2} of area $A_{2} \mathrm{~cm}^{2}$. The chord $P Q$ subtends an angle θ radians at O.

(a) Show that $A_{1}=18(\theta-\sin \theta)$.

Given that $A_{2}=3 A_{1}$ and $\mathrm{f}(\theta)=2 \theta-2 \sin \theta-\pi$:
(b) Prove that $\mathrm{f}(\theta)=0$.
(c) Evaluate $\mathrm{f}(2.3)$ and $\mathrm{f}(2.32)$ and deduce that $2.3<\theta<2.32$. [E]

Solution:

(a) Area of segment $R_{1}=$ area of sector $O P Q \quad-$ area of triangle $O P Q$

$$
\begin{array}{ll}
\Rightarrow & A_{1}=\frac{1}{2} \times 6^{2} \times \theta-\frac{1}{2} \times 6^{2} \times \sin \theta \\
\Rightarrow & A_{1}=18(\theta-\sin \theta)
\end{array}
$$

(b) Area of segment $R_{2}=$ area of circle - area of segment R_{1}
$\Rightarrow \quad A_{2}=\pi 6^{2}-18(\theta-\sin \theta)$

```
    \(\Rightarrow \quad A_{2}=36 \pi-18 \theta+18 \sin \theta\)
As \(A_{2}=3 A_{1}\)
\(36 \pi-18 \theta+18 \sin \theta=3(18 \theta-18 \sin \theta)=54 \theta-54 \sin \theta\)
So \(72 \theta-72 \sin \theta-36 \pi=0\)
    \(\Rightarrow \quad 36(2 \theta-2 \sin \theta-\pi)=0\)
    \(\Rightarrow \quad 2 \theta-2 \sin \theta-\pi=0\)
```

Sof $(\theta)=0$
(c) $\mathrm{f}(2.3)=-0.0330$
f (2.32) $=+0.0339$
As there is a change of $\operatorname{sign} \theta$ lies between 2.3 and 2.32.
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 9

Question:

Triangle $A B C$ has $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{CA}=5 \mathrm{~cm}$. A circle, centre A and radius 3 cm , intersects $A B$ and $A C$ at P and Q respectively, as shown in the diagram.

(a) Show that, to 3 decimal places, $\angle \mathrm{BAC}=1.504$ radians.
(b) Calculate:
(i) The area, in cm^{2}, of the sector $A P Q$.
(ii) The area, in cm^{2}, of the shaded region $B P Q C$.
(iii) The perimeter, in cm , of the shaded region $B P Q C$. [E]

Solution:

(a) In $\triangle A B C$ using the cosine rule:

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 \mathrm{bc}} \\
& \Rightarrow \quad \cos \quad \angle \mathrm{BAC}=\frac{5^{2}+9^{2}-10^{2}}{2 \times 5 \times 9}=0.06 \\
& \Rightarrow \quad \angle \mathrm{BAC}=1.50408 \quad \ldots \quad \text { radians }=1.504^{\mathrm{c}}(3 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

(b) (i) Using the sector area formula: area of sector $=\frac{1}{2} r^{2} \theta$

```
area of sector APQ = = 利 }\times\mp@subsup{3}{}{2}\times1.504=6.77\mp@subsup{\textrm{cm}}{}{2}(3\mathrm{ s.f. }
```

(ii) Area of shaded region $B P Q C$
$=$ area of $\triangle A B C-$ area of sector $A P Q$
$=\frac{1}{2} \times 5 \times 9 \times \sin 1.504^{\mathrm{c}}-\frac{1}{2} \times 3^{2} \times 1.504 \mathrm{~cm}^{2}$
$=15.681 \quad \ldots \quad \mathrm{~cm}^{2}$
$=15.7 \mathrm{~cm}^{2}$ (3 s.f.)
(iii) Perimeter of shaded region $B P Q C$
$=\mathrm{QC}+\mathrm{CB}+\mathrm{BP}+\operatorname{arc} P Q$
$=2+10+6+(3 \times 1.504) \mathrm{cm}$
$=22.51 \quad \ldots \quad \mathrm{~cm}$
$=22.5 \mathrm{~cm}$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 10

Question:

The diagram shows the sector $O A B$ of a circle of radius $r \mathrm{~cm}$. The area of the sector is $15 \mathrm{~cm}^{2}$ and $\angle \mathrm{AOB}=1.5$ radians.

(a) Prove that $r=2 \sqrt{ } 5$.
(b) Find, in cm, the perimeter of the sector $O A B$.

The segment R, shaded in the diagram, is enclosed by the $\operatorname{arc} A B$ and the straight line $A B$.
(c) Calculate, to 3 decimal places, the area of R.
[E]

Solution:

(a) Area of sector $=\frac{1}{2} r^{2}(1.5) \mathrm{cm}^{2}$

So $\frac{3}{4} r^{2}=15$
$\Rightarrow \quad r^{2}=\frac{60}{3}=20$
$\Rightarrow \quad r=\sqrt{ } 20=\sqrt{4 \times 5}=\sqrt{ } 4 \times \sqrt{ } 5=2 \sqrt{ } 5$
(b) Arc length $\mathrm{AB}=r(1.5)=3 \sqrt{ } 5 \mathrm{~cm}$

Perimeter of sector

$$
=\mathrm{AO}+\mathrm{OB}+\operatorname{arc} A B
$$

$$
=(2 \sqrt{ } 5+2 \sqrt{ } 5+3 \sqrt{ } 5) \mathrm{cm}
$$

$$
=7 \sqrt{ } 5 \mathrm{~cm}
$$

$$
=15.7 \mathrm{~cm} \text { (3 s.f. })
$$

(c) Area of segment R
$=$ area of sector - area of triangle
$=15-\frac{1}{2} r^{2} \sin 1.5^{\mathrm{c}} \mathrm{cm}^{2}$
$=\left(15-10 \sin 1.5^{\mathrm{c}}\right) \mathrm{cm}^{2}$
$=5.025 \mathrm{~cm}^{2}$ (3 d.p.)
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 11

Question:

The shape of a badge is a sector $A B C$ of a circle with centre A and radius $A B$, as shown in the diagram. The triangle $A B C$ is equilateral and has perpendicular height 3 cm .

(a) Find, in surd form, the length of $A B$.
(b) Find, in terms of π, the area of the badge.
(c) Prove that the perimeter of the badge is $\frac{2 \sqrt{ } 3}{3}(\pi+6) \mathrm{cm}$.
[E]

Solution:

(a) Using the right-angled $\triangle \mathrm{ABD}$, with $\angle \mathrm{ABD}=60^{\circ}$,
$\sin 60^{\circ}=\frac{3}{\mathrm{AB}}$
$\Rightarrow \quad \mathrm{AB}=\frac{3}{\sin 60^{\circ}}=\frac{3}{\frac{\sqrt{ } 3}{2}}=3 \times \frac{2}{\sqrt{ } 3}=2 \sqrt{ } 3 \mathrm{~cm}$
(b) Area of badge
= area of sector
$=\frac{1}{2} \times(2 \sqrt{ } 3)^{2} \theta$ where $\theta=\frac{\pi}{3}$
$=\frac{1}{2} \times 12 \times \frac{\pi}{3}$
$=2 \pi \mathrm{~cm}^{2}$
(c) Perimeter of badge
$=\mathrm{AB}+\mathrm{AC}+\operatorname{arc} B C$
$=\left(2 \sqrt{ } 3+2 \sqrt{ } 3+2 \sqrt{ } 3 \frac{\pi}{3}\right) \mathrm{cm}$
$=2 \sqrt{ } 3\left(2+\frac{\pi}{3}\right) \mathrm{cm}$
$=\frac{2 \sqrt{ } 3}{3}(6+\pi) \mathrm{cm}$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 12

Question:

There is a straight path of length 70 m from the point A to the point B. The points are joined also by a railway track in the form of an arc of the circle whose centre is C and whose radius is 44 m , as shown in the diagram.

(a) Show that the size, to 2 decimal places, of $\angle \mathrm{ACB}$ is 1.84 radians.
(b) Calculate:
(i) The length of the railway track.
(ii) The shortest distance from C to the path.
(iii) The area of the region bounded by the railway track and the path.

[E]

Solution:

(a) Using right-angled $\triangle \mathrm{ADC}$
$\sin \angle \mathrm{ACD}=\frac{35}{44}$
So $\angle \mathrm{ACD}=\sin ^{-1}\left(\frac{35}{44}\right)$
and $\angle \mathrm{ACB}=2 \sin ^{-1}\left(\frac{35}{44}\right) \quad$ (work in radian mode)
$\Rightarrow \angle \mathrm{ACB}=1.8395 \quad \ldots \quad=1.84^{\mathrm{c}}$ (2 d.p.)
(b) (i) Length of railway track = length of arc $\mathrm{AB}=44 \times 1.8395 \quad \ldots \quad=80.9 \mathrm{~m}$ (3 s.f.)
(ii) Shortest distance from C to $A B$ is $D C$.

Using Pythagoras' theorem:
$D C^{2}=44^{2}-35^{2}$
$D C=\sqrt{44^{2}-35^{2}}=26.7 \mathrm{~m}(3$ s.f. $)$
(iii) Area of region $=$ area of segment
$=$ area of sector $A B C-$ area of $\triangle \mathrm{ABC}$
$=\frac{1}{2} \times 44^{2} \times 1.8395 \ldots \quad-\quad \frac{1}{2} \times 70 \times D C \quad\left(\right.$ or $\frac{1}{2} \times 44^{2} \times \sin 1.8395 \quad \ldots \quad$ c $)$
$=847 \mathrm{~m}^{2}$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications
Exercise D, Question 13
Question:

The diagram shows the cross-section $A B C D$ of a glass prism. $\mathrm{AD}=\mathrm{BC}=4 \mathrm{~cm}$ and both are at right angles to $D C . A B$ is the arc of a circle, centre O and radius 6 cm . Given that $\angle \mathrm{AOB}=2 \theta$ radians, and that the perimeter of the cross-section is $2(7+\pi) \mathrm{cm}$:
(a) Show that $(2 \theta+2 \sin \theta-1)=\frac{\pi}{3}$.
(b) Verify that $\theta=\frac{\pi}{6}$.
(c) Find the area of the cross-section.

Solution:

(a) In $\triangle \mathrm{OAX}$ (see diagram)

$$
\begin{aligned}
\frac{x}{6} & =\sin \theta \\
& \Rightarrow x=6 \sin \theta
\end{aligned}
$$

So $\mathrm{AB}=2 x=12 \sin \theta \quad(\mathrm{AB}=\mathrm{DC})$
The perimeter of cross-section
$=\operatorname{arc} \mathrm{AB}+\mathrm{AD}+\mathrm{DC}+\mathrm{BC}$
$=[6(2 \theta)+4+12 \sin \theta+4] \mathrm{cm}$
$=(8+12 \theta+12 \sin \theta) \mathrm{cm}$

So $2(7+\pi)=8+12 \theta+12 \sin \theta$
$\Rightarrow \quad 14+2 \pi=8+12 \theta+12 \sin \theta$
$\Rightarrow \quad 12 \theta+12 \sin \theta-6=2 \pi$
Divide by 6: $\quad 2 \theta+2 \sin \theta-1=\frac{\pi}{3}$
(b) When $\theta=\frac{\pi}{6}, 2 \theta+2 \sin \theta-1=\frac{\pi}{3}+\left(2 \times \frac{1}{2}\right)-1=\frac{\pi}{3} \quad \checkmark$
(c)

The area of cross-section $=$ area of rectangle $A B C D \quad-$ area of shaded segment
Area of rectangle $=4 \times\left(12 \sin \frac{\pi}{6}\right)=24 \mathrm{~cm}^{2}$
Area of shaded segment
$=$ area of sector - area of triangle
$=\frac{1}{2} \times 6^{2} \times \frac{\pi}{3}-\frac{1}{2} \times 6^{2} \sin \frac{\pi}{3}$
$=3.261 \quad \ldots \quad \mathrm{~cm}^{2}$
So area of cross-section $=20.7 \mathrm{~cm}^{2}$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise D, Question 14

Question:

Two circles C_{1} and C_{2}, both of radius 12 cm , have centres O_{1} and O_{2} respectively. O_{1} lies on the circumference of $C_{2} ; O_{2}$ lies on the circumference of C_{1}. The circles intersect at A and B, and enclose the region R.
(a) Show that $\angle A O_{1} B=\frac{2}{3} \pi$ radians.
(b) Hence write down, in terms of π, the perimeter of R.
(c) Find the area of R, giving your answer to 3 significant figures.

Solution:

(a) $\triangle A O_{1} O_{2}$ is equilateral.

So $\angle A O_{1} O_{2}=\frac{\pi}{3}$ radians
$\angle A O_{1} B=2 \angle A O_{1} O_{2}=\frac{2 \pi}{3}$ radians
(b) Consider arc $A O_{2} B$ in circle C_{1}.

Using arc length $=r \theta$
$\operatorname{arc} A O_{2} B=12 \times \frac{2 \pi}{3}=8 \pi \mathrm{~cm}$
Perimeter of $R=\operatorname{arc} A O_{2} B+\operatorname{arc} A O_{1} B=2 \times 8 \pi=16 \pi \mathrm{~cm}$
(c) Consider the segment $A O_{2} B$ in circle C_{1}.

Area of segment $A O_{2} B$
$=$ area of sector $O_{1} \mathrm{AB}-$ area of $\triangle O_{1} \mathrm{AB}$
$=\frac{1}{2} \times 12^{2} \times \frac{2 \pi}{3}-\frac{1}{2} \times 12^{2} \times \sin \frac{2 \pi}{3}$
$=88.442 \quad \ldots \quad \mathrm{~cm}^{2}$
Area of region R
$=$ area of segment $A O_{2} B+$ area of segment $A O_{1} B$
$=2 \times 88.442 \quad \ldots \quad \mathrm{~cm}^{2}$
$=177 \mathrm{~cm}^{2}$ (3 s.f.)
© Pearson Education Ltd 2008

