INTEGRATION

C1

1	Integrate with respect to x				
	a x^2 b x^6	c <i>x</i>	d x^{-4}	e 5	f $3x^2$
	g $4x^7$ h $6x^{-2}$	i $8x^5$	j $\frac{1}{3}x$	k $2x^{-9}$	$1 \frac{3}{4}x^{-3}$
2	Find				
	a $\int (2x+3) dx$ b	$\int (12x^3 - 4x) \mathrm{d}x$	c $\int (7-z)$	x^2) dx d	$\int (x^2 + x + 1) \mathrm{d}x$
	$\mathbf{e} \int (x^4 + 5x^2) \mathrm{d}x \qquad \mathbf{f}$	$\int x(x^2-3) \mathrm{d}x$	$\mathbf{g} \int (x-2)$	$2)^2 dx \qquad \mathbf{h}$	$\int (3x^4 + x^2 - 6) \mathrm{d}x$
	i $\int (2 + \frac{1}{x^2}) dx$ j	$\int (x-\frac{1}{x^3}) \mathrm{d}x$	$\mathbf{k} \int x^2 (\frac{2}{x^4})$	(-3) dx l	$\int (x - \frac{4}{x})^2 dx$
3	Integrate with respect to y				
	a $y^{\frac{1}{2}}$ b $y^{\frac{5}{2}}$	c $y^{-\frac{1}{2}}$	d $4y^{\frac{1}{3}}$	e $y^{\frac{3}{4}}$	f $5y^{-\frac{2}{3}}$
	g $\sqrt[4]{y}$ h $\frac{7}{\sqrt{y}}$	$\mathbf{i} \frac{1}{2y^2}$	j $\sqrt{y^3}$	$\mathbf{k} \frac{5}{2y^4}$	$1 \frac{1}{3\sqrt{y}}$
4	Find				
	a $\int (3t^{\frac{1}{2}} - 1) dt$ b	$\int (2r + \sqrt{r}) \mathrm{d}r$	c ∫ (3 <i>p</i> –	$(1)^2 dp \qquad \mathbf{d}$	$\int (4x + x^{\frac{1}{3}}) dx$
	$\mathbf{e} \int \ (\frac{1}{y^3} + y) \ \mathrm{d}y \qquad \mathbf{f}$	$\int (\frac{1}{2}x^2 - x^{\frac{3}{2}}) \mathrm{d}x$	$\mathbf{g} \int \frac{t^3 + 2}{t}$	$\frac{t}{dt}$ h	$\int (r^{\frac{5}{3}} - r^{\frac{2}{3}}) \mathrm{d}r$
	$\mathbf{i} \int \frac{4p^4 - p^2}{2p} \mathrm{d}p \qquad \mathbf{j}$	$\int (4-y^{\frac{7}{4}}) \mathrm{d}y$	$\mathbf{k} \int \frac{1+6x}{3x^2}$	$\frac{d^2}{dx}$ l	$\int \frac{2t+3}{\sqrt{t}} \mathrm{d}t$
5	Find $\int y dx$ when				
	a $y = 3x^2 - x + 6$	b $y = x^6 - x^3$	+2x-5	c $y = x(x - x)$	(x+1)
	d $y = (x^{\frac{1}{2}} + 2)^2$	$e y = (x^2 - 4)$	(2x + 3)	$\mathbf{f} y = x^3 - \mathbf{f} = x^3 -$	$2x^{\frac{4}{3}} + \frac{7}{x^2}$
	g $y = \frac{1}{4x^3} - \frac{2}{3x^2}$	h $y = (1 - \frac{2}{x^2})$	$(\frac{1}{2})^2$	i $y = (x^{\frac{5}{2}})$	$(-1)(x^{\frac{3}{2}}+1)$
6	Find a general expression for y given that				
	a $\frac{\mathrm{d}y}{\mathrm{d}x} = 8x + 3$	b $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^3$	$-x^2$	c $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{3x}$	$\frac{1}{r^3}$
	$\mathbf{d} \frac{\mathrm{d}y}{\mathrm{d}x} = (x+1)^3$	$\mathbf{e} \frac{\mathrm{d}y}{\mathrm{d}x} = 2x -$	$\frac{3}{\sqrt{x}}$	$\mathbf{f} \frac{\mathrm{d}y}{\mathrm{d}x} = x^2$	$\frac{3}{2} - 2x^{-\frac{3}{2}}$
	$\mathbf{g} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3 - x^2}{2x^2}$	$\mathbf{h} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{x^3} ($	(5 - x)	$\mathbf{i} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{9x}{3}$	$\frac{x-2}{\sqrt{x}}$

© Solomon Press

INTEGRATION

1 a Find $\int (2x+1) dx$.

C1

- **b** Given that $\frac{dy}{dx} = 2x + 1$ and that y = 5 when x = 1, find an expression for y in terms of x.
- 2 Use the given boundary conditions to find an expression for *y* in each case.
 - **a** $\frac{dy}{dx} = 3 6x$, y = 1 at x = 2 **b** $\frac{dy}{dx} = 3x^2 - x$, y = 41 at x = 4 **c** $\frac{dy}{dx} = x^2 + 4x + 1$, y = 4 at x = -3 **d** $\frac{dy}{dx} = 7 - 5x - x^3$, y = 0 at x = 2 $\frac{dy}{dx} = 2$
 - e $\frac{dy}{dx} = 8x \frac{2}{x^2}$, y = -1 at $x = \frac{1}{2}$ f $\frac{dy}{dx} = 3 \sqrt{x}$, y = 8 at x = 4
- 3 The curve y = f(x) passes through the point (3, 5). Given that $f'(x) = 3 + 2x - x^2$, find an expression for f(x).
- 4 Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 10x^{\frac{3}{2}} - 2x^{-\frac{1}{2}},$$

and that y = 7 when x = 0, find the value of y when x = 4.

- 5 The curve y = f(x) passes through the point (-1, 4). Given that $f'(x) = 2x^3 x 8$,
 - **a** find an expression for f(x),
 - **b** find an equation of the tangent to the curve at the point on the curve with *x*-coordinate 2.
- 6 The curve y = f(x) passes through the origin.

Given that $f'(x) = 3x^2 - 8x - 5$, find the coordinates of the other points where the curve crosses the *x*-axis.

7 Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x + \frac{2}{x^2},$$

a find an expression for y in terms of x.

Given also that y = 8 when x = 2,

- **b** find the value of y when $x = \frac{1}{2}$.
- 8 The curve C with equation y = f(x) is such that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + kx$$

where k is a constant.

Given that C passes through the points (1, 6) and (2, 1),

- **a** find the value of k,
- **b** find an equation of the curve.

INTEGRATION

C1

(2)

(6)

1	Find $\int (x^2 + 6\sqrt{x} - 3) \mathrm{d}x.$	(3)		
2	The curve $y = f(x)$ passes through the point $(1, -2)$.			
	Given that $f'(x) = 1 - \frac{6}{x^3},$			
	a find an expression for $f(x)$.	(4)		
	The point <i>A</i> on the curve $y = f(x)$ has <i>x</i> -coordinate 2.			
	b Show that the normal to the curve $y = f(x)$ at <i>A</i> has the equation			
	16x + 4y - 19 = 0.	(5)		
3	The curve $y = f(x)$ passes through the point (3, 22).			
	Given that			
	$f'(x) = 3x^2 + 2x - 5,$			
	a find an expression for $f(x)$.	(4)		
	Given also that			
	$g(x) = (x+3)(x-1)^2,$			
	b show that $g(x) = f(x) + 2$,	(3)		
	c sketch the curves $y = f(x)$ and $y = g(x)$ on the same set of axes.	(3)		
4	Given that			
	$y = x^2 - \frac{3}{x^2},$			
	find			
	a $\frac{\mathrm{d}y}{\mathrm{d}x}$,	(2)		
	b $\int y dx$.	(3)		
5	The curve C with equation $y = f(x)$ is such that			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 1.$			

Given that the tangent to the curve at the point P with x-coordinate 2 passes through the origin, find an equation for the curve. (7)

6 A curve with equation y = f(x) is such that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{x} - \frac{2}{\sqrt{x}}, \quad x > 0.$$

a Find the gradient of the curve at the point where x = 2, giving your answer in its simplest form.

Given also that the curve passes through the point (4, 7),

b find the *y*-coordinate of the point on the curve where x = 3, giving your answer in the form $a\sqrt{3} + b$, where *a* and *b* are integers.

C1 INTEGRATION

7

(3)

(4)

(4)

(5)

Find **a** $\int (x+2)^2 dx$,

$$\mathbf{b} \quad \int \frac{1}{4\sqrt{x}} \, \mathrm{d}x. \tag{3}$$

8 The curve C has the equation y = f(x) and crosses the x-axis at the point P (-2, 0). Given that

$$f'(x) = 3x^2 - 2x - 3,$$

- **a** find an expression for f(x),
- **b** show that the tangent to the curve at the point where x = 1 has the equation

$$y = 5 - 2x. \tag{3}$$

9 Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{3}{x^2}, \quad x \neq 0,$$

and that y = 0 at x = 1,

- **a** find an expression for y in terms of x, (4)
- **b** show that for all non-zero values of x

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2y = k,$$

where *k* is a constant to be found.

10 Integrate with respect to *x*

a
$$\frac{1}{x^3}$$
, (2)

$$\mathbf{b} \quad \frac{(x-1)^2}{\sqrt{x}} \,. \tag{5}$$

11 The curve y = f(x) passes through the point (2, -5). Given that

$$f'(x) = 4x^3 - 8x$$
,

a find an expression for f(x), (4)

- **b** find the coordinates of the points where the curve crosses the *x*-axis. (4)
- 12 The curve *C* with equation y = f(x) is such that

$$\frac{\mathrm{d}y}{\mathrm{d}x}=k-x^{-\frac{1}{2}},\ x>0,$$

where k is a constant.

Given that C passes through the points (1, -2) and (4, 5),

- **a** find the value of *k*,
- **b** show that the normal to *C* at the point (1, -2) has the equation

$$x + 2y + 3 = 0. (4)$$