C1 Integration

1 Integrate with respect to x
a x^{2}
b x^{6}
c x
d x^{-4}
e 5
f $3 x^{2}$
g $4 x^{7}$
h $6 x^{-2}$
i $8 x^{5}$
j $\frac{1}{3} x$
k $2 x^{-9}$
l $\frac{3}{4} x^{-3}$

2 Find
a $\int(2 x+3) d x$
b $\int\left(12 x^{3}-4 x\right) d x$
c $\int\left(7-x^{2}\right) d x$
d $\int\left(x^{2}+x+1\right) \mathrm{d} x$
e $\int\left(x^{4}+5 x^{2}\right) \mathrm{d} x \quad \mathbf{f} \int x\left(x^{2}-3\right) \mathrm{d} x$
g $\int(x-2)^{2} \mathrm{~d} x$
h $\int\left(3 x^{4}+x^{2}-6\right) d x$
i $\int\left(2+\frac{1}{x^{2}}\right) d x$
$\int\left(x-\frac{1}{x^{3}}\right) d x$
$\mathbf{k} \int x^{2}\left(\frac{2}{x^{4}}-3\right) d x$
l $\int\left(x-\frac{4}{x}\right)^{2} \mathrm{~d} x$

3 Integrate with respect to y
a $y^{\frac{1}{2}}$
b $y^{\frac{5}{2}}$
c $y^{-\frac{1}{2}}$
d $4 y^{\frac{1}{3}}$
e $y^{\frac{3}{4}}$
f $5 y^{-\frac{2}{3}}$
g $\sqrt[4]{y}$
h $\frac{7}{\sqrt{y}}$
i $\frac{1}{2 y^{2}}$
j $\sqrt{y^{3}}$
k $\frac{5}{2 y^{4}}$
l $\frac{1}{3 \sqrt{y}}$

4 Find
a $\int\left(3 t^{\frac{1}{2}}-1\right) \mathrm{d} t$
b $\int(2 r+\sqrt{r}) \mathrm{d} r$
c $\int(3 p-1)^{2} \mathrm{~d} p$
d $\int\left(4 x+x^{\frac{1}{3}}\right) \mathrm{d} x$
e $\int\left(\frac{1}{y^{3}}+y\right) d y$
f $\int\left(\frac{1}{2} x^{2}-x^{\frac{3}{2}}\right) d x$
$\mathbf{g} \int \frac{t^{3}+2 t}{t} \mathrm{~d} t$
h $\int\left(r^{\frac{5}{3}}-r^{\frac{2}{3}}\right) \mathrm{d} r$
i $\int \frac{4 p^{4}-p^{2}}{2 p} \mathrm{~d} p$
j $\int\left(4-y^{\frac{7}{4}}\right) d y$
$\mathbf{k} \int \frac{1+6 x^{2}}{3 x^{2}} \mathrm{~d} x$
l $\int \frac{2 t+3}{\sqrt{t}} \mathrm{~d} t$

5 Find $\int y \mathrm{~d} x$ when
a $y=3 x^{2}-x+6$
b $y=x^{6}-x^{3}+2 x-5$
c $y=x(x-2)(x+1)$
d $y=\left(x^{\frac{1}{2}}+2\right)^{2}$
e $y=\left(x^{2}-4\right)(2 x+3)$
f $y=x^{3}-2 x^{\frac{4}{3}}+\frac{7}{x^{2}}$
g $y=\frac{1}{4 x^{3}}-\frac{2}{3 x^{2}}$
h $y=\left(1-\frac{2}{x^{2}}\right)^{2}$
i $y=\left(x^{\frac{5}{2}}-1\right)\left(x^{\frac{3}{2}}+1\right)$

6 Find a general expression for y given that
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x+3$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{3}-x^{2}$
c $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{3 x^{3}}$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+1)^{3}$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{3}{\sqrt{x}}$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{\frac{3}{2}}-2 x^{-\frac{3}{2}}$
g $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3-x^{2}}{2 x^{2}}$
h $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x^{3}}(5-x)$
i $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{9 x-2}{3 \sqrt{x}}$

C1 Integration

1 a Find $\int(2 x+1) d x$.
b Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+1$ and that $y=5$ when $x=1$, find an expression for y in terms of x.

2 Use the given boundary conditions to find an expression for y in each case.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-6 x, \quad y=1$ at $x=2$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-x, \quad y=41$ at $x=4$
c $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+4 x+1, \quad y=4$ at $x=-3$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}=7-5 x-x^{3}, \quad y=0$ at $x=2$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-\frac{2}{x^{2}}, \quad y=-1$ at $x=\frac{1}{2}$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-\sqrt{x}, \quad y=8$ at $x=4$

3 The curve $y=\mathrm{f}(x)$ passes through the point $(3,5)$.
Given that $\mathrm{f}^{\prime}(x)=3+2 x-x^{2}$, find an expression for $\mathrm{f}(x)$.
4 Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{\frac{3}{2}}-2 x^{-\frac{1}{2}}
$$

and that $y=7$ when $x=0$, find the value of y when $x=4$.
5 The curve $y=\mathrm{f}(x)$ passes through the point ($-1,4$). Given that $\mathrm{f}^{\prime}(x)=2 x^{3}-x-8$,
a find an expression for $\mathrm{f}(x)$,
b find an equation of the tangent to the curve at the point on the curve with x-coordinate 2 .
6 The curve $y=\mathrm{f}(x)$ passes through the origin.
Given that $\mathrm{f}^{\prime}(x)=3 x^{2}-8 x-5$, find the coordinates of the other points where the curve crosses the x-axis.

7 Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x+\frac{2}{x^{2}}
$$

a find an expression for y in terms of x.
Given also that $y=8$ when $x=2$,
b find the value of y when $x=\frac{1}{2}$.
8 The curve C with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+k x
$$

where k is a constant.
Given that C passes through the points $(1,6)$ and $(2,1)$,
a find the value of k,
b find an equation of the curve.

C1 Integration

1 Find

$$
\begin{equation*}
\int\left(x^{2}+6 \sqrt{x}-3\right) d x \tag{3}
\end{equation*}
$$

2 The curve $y=\mathrm{f}(x)$ passes through the point $(1,-2)$.
Given that

$$
\mathrm{f}^{\prime}(x)=1-\frac{6}{x^{3}},
$$

a find an expression for $\mathrm{f}(x)$.
The point A on the curve $y=\mathrm{f}(x)$ has x-coordinate 2 .
b Show that the normal to the curve $y=\mathrm{f}(x)$ at A has the equation

$$
\begin{equation*}
16 x+4 y-19=0 . \tag{5}
\end{equation*}
$$

3 The curve $y=\mathrm{f}(x)$ passes through the point (3,22).
Given that

$$
\mathrm{f}^{\prime}(x)=3 x^{2}+2 x-5,
$$

a find an expression for $\mathrm{f}(x)$.
Given also that

$$
\begin{equation*}
\mathrm{g}(x)=(x+3)(x-1)^{2}, \tag{3}
\end{equation*}
$$

b show that $\mathrm{g}(x)=\mathrm{f}(x)+2$,
c sketch the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ on the same set of axes.
4 Given that

$$
y=x^{2}-\frac{3}{x^{2}},
$$

find
a $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
b $\int y \mathrm{~d} x$.
5 The curve C with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x-1 .
$$

Given that the tangent to the curve at the point P with x-coordinate 2 passes through the origin, find an equation for the curve.

6 A curve with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{x}-\frac{2}{\sqrt{x}}, x>0 .
$$

a Find the gradient of the curve at the point where $x=2$, giving your answer in its simplest form.
Given also that the curve passes through the point $(4,7)$,
b find the y-coordinate of the point on the curve where $x=3$, giving your answer in the form $a \sqrt{3}+b$, where a and b are integers.
$7 \quad$ Find
a $\int(x+2)^{2} \mathrm{~d} x$,
b $\int \frac{1}{4 \sqrt{x}} \mathrm{~d} x$.
$8 \quad$ The curve C has the equation $y=\mathrm{f}(x)$ and crosses the x-axis at the point $P(-2,0)$.
Given that

$$
\mathrm{f}^{\prime}(x)=3 x^{2}-2 x-3
$$

a find an expression for $\mathrm{f}(x)$,
b show that the tangent to the curve at the point where $x=1$ has the equation

$$
\begin{equation*}
y=5-2 x \tag{3}
\end{equation*}
$$

9 Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{3}{x^{2}}, \quad x \neq 0
$$

and that $y=0$ at $x=1$,
a find an expression for y in terms of x,
b show that for all non-zero values of x

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 y=k \tag{4}
\end{equation*}
$$

where k is a constant to be found.
10 Integrate with respect to x
a $\frac{1}{x^{3}}$,
b $\frac{(x-1)^{2}}{\sqrt{x}}$.

11 The curve $y=\mathrm{f}(x)$ passes through the point (2, -5).
Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=4 x^{3}-8 x \tag{4}
\end{equation*}
$$

a find an expression for $\mathrm{f}(x)$,
b find the coordinates of the points where the curve crosses the x-axis.
12 The curve C with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=k-x^{-\frac{1}{2}}, \quad x>0
$$

where k is a constant.
Given that C passes through the points $(1,-2)$ and $(4,5)$,
a find the value of k,
b show that the normal to C at the point $(1,-2)$ has the equation

$$
\begin{equation*}
x+2 y+3=0 \tag{4}
\end{equation*}
$$

