C1

Worksheet A

- 1 Find the gradient of the line segment joining each pair of points. **a** (3, 1) and (5, 5) **b** (4, 7) and (10, 9) **c** (6, 1) and (2, 5) **d** (-2, 2) and (2, 8) **e** (1, 3) and (7, -1) **f** (4, 5) and (-5, -7) **g** (-2, 0) and (0, -8) **h** (8, 6) and (-7, -2) 2 Write down the gradient and y-intercept of each line. **a** y = 4x - 1**b** $y = \frac{1}{3}x + 3$ **c** y = 6 - x **d** $y = -2x - \frac{3}{5}$ 3 Find the gradient and *y*-intercept of each line. **b** x - 2y - 6 = 0 **c** 3x + 3y - 2 = 0 **d** 4x - 5y + 1 = 0**a** x + y + 3 = 04 Write down, in the form $y - y_1 = m(x - x_1)$, the equation of the straight line with the given gradient which passes through the given point. **b** gradient 5, point (2, -5)**a** gradient 2, point (4, 1) **c** gradient -3, point (-1, 1)**d** gradient $\frac{1}{2}$, point (1, 6) e gradient -2, point $(\frac{3}{4}, -\frac{1}{4})$ **f** gradient $-\frac{1}{5}$, point (-3, -7) 5 Find, in the form y = mx + c, the equation of the straight line with the given gradient which passes through the given point. **b** gradient -1, point (5, 3)**a** gradient 3, point (1, 2)**c** gradient 4, point (-2, -3)**d** gradient -2, point (-4, 1)e gradient $\frac{1}{3}$, point (-3, 1) **f** gradient $-\frac{5}{6}$, point (9, -2) Find, in each case, the equation of the straight line with gradient *m* which passes through the 6 point P. Give your answers in the form ax + by + c = 0, where a, b and c are integers. **a** m = 1, P(2, -4) **b** $m = \frac{1}{2}$, P(6, 1) **c** m = -4, P(-1, 8)**d** $m = \frac{2}{5}$, P(-3, 5) **e** m = -3, $P(\frac{3}{2}, -\frac{1}{8})$ **f** $m = -\frac{3}{4}$, $P(\frac{2}{3}, -7)$ 7 Find, in the form y = mx + c, the equation of the straight line passing through each pair of points. **a** (0, 1) and (4, 13) **b** (2, 9) and (7, -1) **c** (-4, 3) and (2, 7) **d** $(-\frac{1}{2}, -2)$ and (2, 8) **e** (3, -2) and (18, -5) **f** (-3.2, 4) and (-2, 0.4)Find, in the form ax + by + c = 0, where a, b and c are integers, the equation of the straight line 8 which passes through each pair of points. **a** (3, 0) and (5, 2) **b** (-1, 8) and (5, -4) **c** (-5, 3) and (7, 5) **d** (-4, -1) and (8, -17) **e** (2, -1.5) and (7, 0) **f** $\left(-\frac{3}{5}, \frac{1}{10}\right)$ and (3, 1) 9 The straight line *l* passes through the points A(-6, 8) and B(3, 2). **a** Find an equation of the line *l*. **b** Show that the point C(9, -2) lies on *l*. 10 The point *M* (*k*, 2*k*) lies on the line with equation x - 3y + 15 = 0.
 - Find the value of the constant k.

© Solomon Press

11	The point with accordinates (Ap	r^2) lies on the line with equation	an 2u 4u + 5 = 0		
11	The point with coordinates $(4p, p^2)$ lies on the line with equation $2x - 4y + 5 = 0$. Find the two possible values of the constant <i>p</i> .				
12	2 Find the coordinates of the points at which each straight line crosses the coordinate axes.				
	_	3y + 6 = 0 c $2x + 4y - 3$			
13	The line <i>l</i> has the equation $5x$ -	-18y - 30 = 0.			
	a Find the coordinates of the p	points A and B where the line l	crosses the coordinate axes.		
	b Find the area of triangle <i>OAB</i> where <i>O</i> is the origin.				
14	Find the exact length of the line segment joining each pair of points, giving your answers in terms of surds where appropriate.				
	a (1, 1) and (4, 5)	b (0, 0) and (3, 1)	c (1, -4) and (9, 11)		
	d (7, -8) and (-9, 4)	e (3, 12) and (1, 7)	f (-6, -3) and (2, -7)		
15	The points $P(22, 15)$, $Q(-13, c)$ and $R(k, 24)$ all lie on a circle, centre $(2, 0)$.				
	Find the radius of the circle and	d the possible values of the con	stants c and k .		
16	The points A (-2, 7) and B (6, -3) lie at either end of the diameter of a circle.				
	Find the area of the circle, givin				
17	 The corners of a triangle are the points P (4, 7), Q (-2, 5) and R (3, -10). a Find the length of each side of triangle PQR, giving your answers in terms of surds. b Hence, verify that triangle PQR contains a right-angle. c Find the area of triangle PQR. 				
18	Find the coordinates of the mid	l-point of the line segment joini	ng each pair of points.		
	a (0, 2) and (8, 4)	b (1, 9) and (7, 5)	c (-5, 1) and (3, -7)		
	d (−5, −7) and (7, −5)				
	g (2.4, 3.1) and (0.6, 4.5)	h (0, 3) and $(\frac{1}{2}, \frac{3}{2})$	i $(-\frac{5}{4}, 2)$ and $(-1, -\frac{3}{5})$		
19	The straight line l_1 passes through	igh the points $P(-2, 1)$ and $Q($	4, -1).		
	a Find the equation of l_1 in the form $ax + by + c = 0$, where a, b and c are integers.				
The straight line l_2 passes through the point R (2, 4) and through the mid-point of PQ.					
	b Find the equation of l_2 in the	e form $y = mx + c$.			
20	Find the coordinates of the point of intersection of each pair of straight lines.				
	a $y = 2x + 1$	b $y = x + 7$	c $y = 5x - 4$		
	y = 3x - 1 d $x + 2y - 4 = 0$	y = 4 - 2x e $2x + y - 2 = 0$	y = 3x - 1 f $3x + 2y = 0$		
	$\begin{array}{c} \mathbf{u} x + 2y - 4 = 0\\ 3x - 2y + 4 = 0 \end{array}$		x + 4y - 2 = 0		
21	The line <i>l</i> with equation $x - 2y$ equation $3x + y - 15 = 0$ cross Find the area of triangle <i>PQR</i> .		_		

© Solomon Press

PMT

Worksheet B

- 1 Find the gradient of a straight line that is
 - **a** parallel to the line y = 3 2x,

C1

- **b** parallel to the line 2x 5y + 1 = 0,
- c perpendicular to the line y = 3x + 4,
 - **d** perpendicular to the line x + 2y 3 = 0.
- 2 Find, in the form y = mx + c, the equation of the straight line
 - **a** parallel to the line y = 4x 1 which passes through the point with coordinates (1, 7),
 - **b** perpendicular to the line y = 6 x which passes through the point with coordinates (-4, 3),
 - **c** perpendicular to the line x 3y = 0 which passes through the point with coordinates (-2, -2).
- 3 Find, in the form ax + by + c = 0, where a, b and c are integers, the equation of the straight line
 - **a** parallel to the line 2x 3y + 5 = 0 which passes through the point with coordinates (3, -1),
 - **b** perpendicular to the line 3x + 4y = 1 which passes through the point with coordinates (2, 5),
 - c parallel to the line 3x + 5y = 6 which passes through the point with coordinates (-4, -7).
- Find, in the form ax + by + c = 0, where a, b and c are integers, the equation of the 4 perpendicular bisector of the line segment joining each pair of points.
 - **b** (2, 7) and (4, 1) c (-3, -2) and (9, 1)**a** (0, 4) and (8, 0)
- The vertices of a triangle are the points A(-6, -3), B(4, -1) and C(3, 4). 5
 - **a** Find the gradient of *AB* and the gradient of *BC*.
 - **b** Show that $\angle ABC = 90^{\circ}$.
- 6 The line with equation 2x - 3y + 5 = 0 is perpendicular to the line with equation 3x + ky - 1 = 0. Find the value of the constant *k*.
- 7 The straight line *l* passes through the points A(-5, 5) and B(1, 7).
 - **a** Find an equation of the line *l*. Give your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

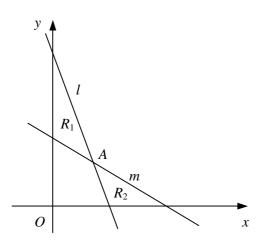
The point *M* is the mid-point of *AB*.

- **b** Prove that the line *OM*, where *O* is the origin, is perpendicular to line *l*.
- 8 The straight line *p* has the equation 3x - 4y + 8 = 0. The straight line q is parallel to p and passes through the point with coordinates (8, 5).

a Find the equation of q in the form y = mx + c.

The straight line r is perpendicular to p and passes through the point with coordinates (-4, 6).

- **b** Find the equation of r in the form ax + by + c = 0, where a, b and c are integers.
- **c** Find the coordinates of the point where lines q and r intersect.
- 9 The straight line l_1 passes through the points with coordinates (-3, 7) and (1, -5).
 - **a** Find an equation of the line l_1 in the form ax + by + c = 0, where a, b and c are integers. The line l_2 is perpendicular to l_1 and passes through the point with coordinates (4, 6).
 - **b** Find, in the form $k\sqrt{5}$, the distance from the origin of the point where l_1 and l_2 intersect.


- 1 The straight line *l* has gradient -3 and passes through the point with coordinates (3, -5).
 - **a** Find an equation of the line l.
 - The straight line *m* passes through the points with coordinates (-1, -2) and (4, 1).
 - **b** Find the equation of *m* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The lines l and m intersect at the point P.

- **c** Find the coordinates of *P*.
- 2 Given that the straight line passing through the points A (2, -3) and B (7, k) has gradient $\frac{3}{2}$,
 - **a** find the value of k,

C1

- **b** show that the perpendicular bisector of *AB* has the equation 8x + 12y 45 = 0.
- **3** The vertices of a triangle are the points A(5, 4), B(-5, 8) and C(1, 11).
 - **a** Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
 - **b** Find the coordinates of the point M, the mid-point of AC.
 - **c** Show that OM is perpendicular to AB, where O is the origin.

The line *l* with equation 3x + y - 9 = 0 intersects the line *m* with equation 2x + 3y - 12 = 0 at the point *A* as shown in the diagram above.

a Find, as exact fractions, the coordinates of the point A.

The region R_1 is bounded by l, m and the y-axis.

The region R_2 is bounded by l, m and the x-axis.

b Show that the ratio of the area of R_1 to the area of R_2 is 25 : 18

5

4

The straight line *l* has the equation 2x + 5y + 10 = 0.

The straight line *m* has the equation 6x - 5y - 30 = 0.

a Sketch the lines *l* and *m* on the same set of axes showing the coordinates of any points at which each line crosses the coordinate axes.

The points where line m crosses the coordinate axes are denoted by A and B.

b Show that *l* passes through the mid-point of *AB*.

PMT

6 The straight line *l* passes through the points with coordinates (-10, -4) and (5, 4).

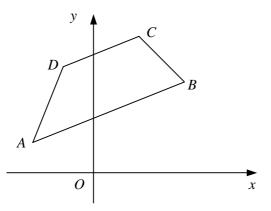
a Find the equation of *l* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The line l crosses the coordinate axes at the points P and Q.

- **b** Find, as an exact fraction, the area of triangle *OPQ*, where *O* is the origin.
- **c** Show that the length of PQ is $2\frac{5}{6}$.

7 The point *A* has coordinates (-8, 1) and the point *B* has coordinates (-4, -5).

- **a** Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
- **b** Show that the distance of the mid-point of *AB* from the origin is $k\sqrt{10}$ where *k* is an integer to be found.


8 The straight line l_1 has gradient $\frac{1}{3}$ and passes through the point with coordinates (-3, 4).

a Find the equation of l_1 in the form ax + by + c = 0, where a, b and c are integers.

The straight line l_2 has the equation 5x + py - 2 = 0 and intersects l_1 at the point with coordinates (q, 7).

b Find the values of the constants p and q.

The diagram shows trapezium *ABCD* in which sides *AB* and *DC* are parallel. The point *A* has coordinates (-4, 2) and the point *B* has coordinates (6, 6).

a Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

Given that the gradient of BC is -1,

b find an equation of the straight line passing through *B* and *C*.

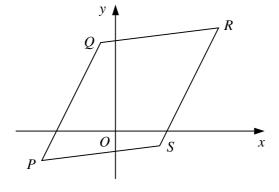
- Given also that the point D has coordinates (-2, 7),
- c find the coordinates of the point C,
- **d** show that $\angle ACB = 90^{\circ}$.

10 The straight line *l* passes through the points *A* (1, $2\sqrt{3}$) and *B* ($\sqrt{3}$, 6).

- **a** Find the gradient of l in its simplest form.
- **b** Show that l also passes through the origin.
- c Show that the straight line which passes through A and is perpendicular to l has equation

$$x + 2\sqrt{3} y - 13 = 0.$$

(4)

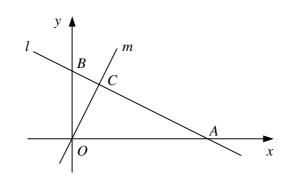

(4)

(3)

1	The straight line <i>l</i> has the equation $y = 1 - 2x$. The straight line <i>m</i> is perpendicular to <i>l</i> and passes through the point with coordinates (6, -1).		
	a Find the equation of <i>m</i> in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	(4)	
	b Find the coordinates of the point where l and m intersect.	(3)	
2	The straight line <i>l</i> passes through the point <i>A</i> $(1, -3)$ and the point <i>B</i> $(7, 5)$.		
	a Find an equation of line <i>l</i> .	(3)	
	The line <i>m</i> has the equation $4x + y - 17 = 0$ and intersects <i>l</i> at the point <i>C</i> .		
	b Show that <i>C</i> is the mid-point of <i>AB</i> .	(4)	
	c Show that the straight line perpendicular to m which passes through the point C also passes through the origin.	(4)	
3	The point <i>A</i> has coordinates (-2, 7) and the point <i>B</i> has coordinates (4, <i>p</i>). The point <i>M</i> is the mid-point of <i>AB</i> and has coordinates $(q, \frac{9}{2})$.		
	a Find the values of the constants <i>p</i> and <i>q</i> .	(3)	
	b Find the equation of the straight line perpendicular to <i>AB</i> which passes through the point <i>A</i> . Give your answer in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	(5)	

C1

The points P(-5, -2), Q(-1, 6), R(7, 7) and S(3, -1) are the vertices of a parallelogram as shown in the diagram above.


- **a** Find the length of PQ in the form $k\sqrt{5}$, where k is an integer to be found.(3)**b** Find the coordinates of the point M, the mid-point of PQ.(2)
- **c** Show that *MS* is perpendicular to *PQ*.
- **d** Find the area of parallelogram *PQRS*.
- 5 The straight line *l* is parallel to the line 2x y + 4 = 0 and passes through the point with coordinates (-1, -3).
 - **a** Find an equation of line *l*.

The straight line *m* is perpendicular to the line 6x + 5y - 2 = 0 and passes through the point with coordinates (4, 4).

- **b** Find the equation of line *m* in the form ax + by + c = 0, where *a*, *b* and *c* are integers. (5)
- c Find, as exact fractions, the coordinates of the point where lines l and m intersect. (3)

- The straight line *l* has gradient $\frac{1}{2}$ and passes through the point with coordinates (2, 4). 6
 - **a** Find the equation of *l* in the form ax + by + c = 0, where *a*, *b* and *c* are integers. (3) The straight line *m* has the equation y = 2x - 6.
 - **b** Find the coordinates of the point where line *m* intersects line *l*. (3)
 - c Show that the quadrilateral enclosed by line l, line m and the positive coordinate axes is a kite. (4)

7

The diagram shows the straight line l with equation x + 2y - 20 = 0 and the straight line m which is perpendicular to *l* and passes through the origin *O*.

a Find the coordinates of the points A and B where l meets the x-axis and y-axis (2)respectively.

Given that *l* and *m* intersect at the point *C*,

- **b** find the ratio of the area of triangle *OAC* to the area of triangle *OBC*. (5)
- The straight line *p* has the equation 6x + 8y + 3 = 0. 8

The straight line q is parallel to p and crosses the y-axis at the point with coordinates (0, 7).

a Find the equation of q in the form y = mx + c.

The straight line r is perpendicular to p and crosses the x-axis at the point with coordinates (1, 0).

- **b** Find the equation of r in the form ax + by + c = 0, where a, b and c are integers. (4)
- **c** Show that the point where lines q and r intersect lies on the line y = x. (4)
- 9 The vertices of a triangle are the points P(3, c), Q(9, 2) and R(3c, 11) where c is a constant. Given that $\angle PQR = 90^{\circ}$,

a find the value of c ,	(5)
b show that the length of PQ is $k\sqrt{10}$, where k is an integer to be found,	(3)
c find the area of triangle PQR .	(4)

c find the area of triangle *PQR*.

10 The straight line l_1 passes through the point P(1, 3) and the point Q(13, 12).

- **a** Find the length of *PQ*. (2) **b** Find the equation of l_1 in the form ax + by + c = 0, where a, b and c are integers. (4) The straight line l_2 is perpendicular to l_1 and passes through the point *R* (2, 10).
- **c** Find an equation of line l_2 .
- **d** Find the coordinates of the point where lines l_1 and l_2 intersect. (3) e Find the area of triangle *PQR*. (3)

(2)

(3)