Core 1 Integration Questions

8 The diagram shows the curve with equation $y = 3x^2 - x^3$ and the line L.

![Graph showing the curve and line L](image)

The points A and B have coordinates $(-1, 0)$ and $(2, 0)$ respectively. The curve touches the x-axis at the origin O and crosses the x-axis at the point $(3, 0)$. The line L cuts the curve at the point D where $x = -1$ and touches the curve at C where $x = 2$.

(a) Find the area of the rectangle $ABCD$.

(b)
(i) Find $\int (3x^2 - x^3) \, dx$.

(ii) Hence find the area of the shaded region bounded by the curve and the line L.

(c) For the curve above with equation $y = 3x^2 - x^3$:

(i) find $\frac{dy}{dx}$;

(ii) hence find an equation of the tangent at the point on the curve where $x = 1$;

(iii) show that y is decreasing when $x^2 - 2x > 0$.

(d) Solve the inequality $x^2 - 2x > 0$.

(2 marks)

(3 marks)

(4 marks)

(2 marks)

(3 marks)

(2 marks)

(2 marks)
5 The curve with equation \(y = x^3 - 10x^2 + 28x \) is sketched below.

The curve crosses the \(x \)-axis at the origin \(O \) and the point \(A(3, 21) \) lies on the curve.

(b) (i) Find \(\int (x^3 - 10x^2 + 28x) \, dx \). \(\text{(3 marks)} \)

(ii) Hence show that \(\int_0^3 (x^3 - 10x^2 + 28x) \, dx = 56 \frac{1}{4} \). \(\text{(2 marks)} \)

(iii) Hence determine the area of the shaded region bounded by the curve and the line \(OA \). \(\text{(3 marks)} \)

6 The curve with equation \(y = 3x^5 + 2x + 5 \) is sketched below.

The curve cuts the \(x \)-axis at the point \(A(-1, 0) \) and cuts the \(y \)-axis at the point \(B \).

(a) (i) State the coordinates of the point \(B \) and hence find the area of the triangle \(AOB \), where \(O \) is the origin. \(\text{(3 marks)} \)

(ii) Find \(\int (3x^5 + 2x + 5) \, dx \). \(\text{(3 marks)} \)
(iii) Hence find the area of the shaded region bounded by the curve and the line AB.

(4 marks)

(b) (i) Find the gradient of the curve with equation $y = 3x^5 + 2x + 5$ at the point $A(-1, 0)$.

(3 marks)

(ii) Hence find an equation of the tangent to the curve at the point A.

(1 mark)

(b) The curve with equation $y = x^3 + 4x - 5$ is sketched below.

The curve cuts the x-axis at the point $A(1, 0)$ and the point $B(2, 11)$ lies on the curve.

(i) Find $\int (x^3 + 4x - 5) \, dx$.

(3 marks)

(ii) Hence find the area of the shaded region bounded by the curve and the line AB.

(4 marks)
Core 1 Integration Answers

Question 8(a)
- **y_D = 3 + 1 = 4** or **y_C = 12 - 8 = 4**
- **Area ABCD = 3 × 4 = 12**

Question 8(b)(i)
- \(x^3 - \frac{x^4}{4} \) \(+ C \)
- **M1** or **A1 2**
 - Attempt at either y coordinate

Question 8(b)(ii)
- **Sub limits -1 and 2 into their (b)(i) ans**
- \[8 - 4 \left(-\frac{1}{4} \right) = 5 \frac{1}{4} \]
- **Shaded area = “their” (rectangle– integral)**
- \(= 12 - 5 \frac{1}{4} = 6 \frac{3}{4} \)

Question 8(c)(i)
- \(\frac{dy}{dx} = 6x - 3x^2 \)

Question 8(c)(ii)
- When \(x = 1, \ y = 2 \) when \(x = 1, \)
- \(\frac{dy}{dx} = 3 \) as ‘their’ grad of tgt
- **M1\(^\wedge \)**
- **A1 3**
 - Any correct form \(y = 3x - 1 \) etc

Question 8(d)
- **Decreasing when** \(\frac{dy}{dx} = 6x - 3x^2 < 0 \)
- \(3(2x - x^2) < 0 \) \(\Rightarrow x^2 - 2x > 0 \)

Question 8(b)(i)
- \(\frac{x^4}{4} - \frac{10x^3}{3} + 14x^2 \) \(+ C \)

Question 8(b)(ii)
- \[\left[\frac{81}{4} - 90 + 126 \right] = 56 \frac{1}{4} \]

Question 8(b)(iii)
- **Area of triangle = 31 \(\frac{1}{2} \)**
- **Shaded Area = 56 \(\frac{1}{4} \) - triangle area**
- **A1 3**
 - Or equivalent such as \(99 \frac{3}{4} \)

Total
- **18**
6(a)(i) \[B (0, 5) \]
Area \(AOB = \frac{1}{2} \times 1 \times 5 \]
\[= 2\frac{1}{2} \] \(\quad \text{M1} \]
\(\text{A1} \) 3
Condone slip in number or a minus sign

(ii) \[\frac{3x^6}{6} + \frac{2x^2}{2} + 5x \]
\(\text{or} \quad \frac{x^6}{2} + x^2 + 5x \)
\(\quad \text{(may have } c \text{ or not)} \) \(\quad \text{M1} \]
\(\text{A1} \) 3
One term correct
All correct unsimplified

(iii) Area under curve = \[\int_{-3}^{0} f(x) \, dx \]
\[[0] - \left[\frac{1}{2} + 1 - 5 \right] \]
Area under curve = \(3\frac{1}{2} \) \(\quad \text{M1} \]
\(\text{A1} \)
Correctly written or \(F(0) - F(-1) \) correct
Attempt to sub limit(s) of \(-1\) (and 0)
Must have integrated
CSO (no fudging)

Area of shaded region = \(3\frac{1}{2} - 2\frac{1}{2} = 1 \) \(\quad \text{B1} \)
\(\text{FT} \) their integral and triangle (very generous)

(b)(i) \[\frac{dy}{dx} = 15x^4 + 2 \]
when \(x = -1 \), gradient = 17
One term correct
All correct (no +c etc)
\(\text{A1} \) 3
cso

(ii) \(y = "\text{their gradient}"(x + 1) \) \(\quad \text{B1} \)
\(\text{FT} \)
Must be finding tangent - not normal any form e.g. \(y = 17x + 17 \)

Total 14

(b)(i) \[\int \ldots dx = \frac{x^4}{4} + 2x^2 - 5x + c \] \(\quad \text{M1} \]
\(\text{A1} \) 3
One term correct unsimplified
Second term correct unsimplified
All correct unsimplified

(ii) \[[4 + 8 - 10] - \left[\frac{1}{4} + 2 - 5 \right] \]
\[= 4\frac{3}{4} \] \(\quad \text{M1} \]
\(\text{A1} \)
correct use of limits 1 and 2;
\(F(2) - F(1) \) attempted

Area of \(\Delta = \frac{1}{2} \times 11 = 5\frac{1}{2} \)
\(\Rightarrow \) shaded area = \(5\frac{1}{2} - 4\frac{3}{4} \)
\(= 3\frac{3}{4} \) \(\quad \text{B1} \)
correct unsimplified
combined integral of \(7x - 6 - x^3 \) scores
M1 for limits correctly used then

A3 correct answer with all working correct