

A-LEVEL Mathematics

Pure Core 1 – MPC1 Mark scheme

6360 June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a)	$y = \pm \frac{3}{5}x + \dots$	M1		$y = -\frac{3}{5}x + \frac{7}{5}$ for guidance
	(Gradient $AB = $) $-\frac{3}{5}$	A1	2	5 5
(b)	Grad of perp = $\frac{5}{3}$	M1		FT negative reciprocal of their (a)
	$y + 3 = \frac{5}{3}(x+2)$	A1		any correct form with $$ simplified to $+$ eg $y = \frac{5}{3}x + c$, $c = \frac{1}{3}$
	5x - 3y + 1 = 0	A1	3	integer coefficients with all terms on one side of equation & "=0"
(c)	3x+5y=7 & $2x-3y=30eg 9x+10x=21+150$	M1		correct equations used and correct elimination of x or y eg $19x = 171$ or $19y = -76$
	$x = 9$ or $x = \frac{171}{19}$ or $y = -4$ or $y = \frac{-76}{19}$	A1		either x or y correct in any equivalent form
	$x = 9 \qquad \text{and} \qquad y = -4$	A1	3	(9,-4) both written as integers
	Total		8	

(a) Do not penalise incorrect rearrangement if correct gradient is stated.

Example $y = -\frac{3}{5}x + 7$ so grad = $-\frac{3}{5}$ scores **M1 A1**

NMS (grad AB =) $-\frac{3}{5}$ earns 2 marks. NMS (grad AB =) $\frac{3}{5}$ earns M1 A0.

NMS Award **M1 A0** only for "gradient = $-\frac{3}{5}x$ ".

May use two **correct** points eg (-1,2) and (-6,5) then $\frac{5-2}{-6-1}$ scores **M1** (must be correct unsimplified) with **A1** for $-\frac{3}{5}$

(b) Condone 0 = 6y - 10x - 2 etc for final A1, but not 3y - 5x = 1 etc

(c)
$$2\left(\frac{7}{3} - \frac{5y}{3}\right) - 3y = 30$$
 earns M1, however $2\left(\frac{7}{3} + \frac{5y}{3}\right) - 3y = 30$, for example, scores M0. Accept any equivalent form for first A1 but must have $x = 9$ and $y = -4$ for final A1.

Q2	Solution	Mark	Total	Comment
	$\frac{4\sqrt{5}-2\sqrt{3}}{\sqrt{5}-\sqrt{3}}$	B1		or $\frac{2\sqrt{3} - 4\sqrt{5}}{\sqrt{3} - \sqrt{5}}$
	$\times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$	M1		multiplying top & bottom by conjugate of their denominator
	(Numerator =) $20 + 4\sqrt{15} - 2\sqrt{15} - 6$	A1		$14 + 2\sqrt{15}$
	(Denominator =) $ (5 - \sqrt{5}\sqrt{3} + \sqrt{5}\sqrt{3} - 3 =) $ 2	B1		must be seen as denominator
	$(Gradient =) 7 + \sqrt{15}$	A1cso	5	$\frac{14+2\sqrt{15}}{2}$
	Total		5	

NO MISREADS ALLOWED IN THIS QUESTION

Condone multiplication by $\sqrt{5} + \sqrt{3}$ instead of $\times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ for **M1 only if** subsequent working shows multiplication by both numerator and denominator – otherwise **M0**

Must have $\sqrt{15}$ and not just $\sqrt{3}\sqrt{5}$ for first A1

An error in the denominator such as $5-\sqrt{8}+\sqrt{8}-3=2$ should be given **B0** and it would then automatically lose the final **A1cso**

May use alternative conjugate $\times \frac{-\sqrt{5} - \sqrt{3}}{-\sqrt{5} - \sqrt{3}}$ M1; numerator = $-14 - 2\sqrt{15}$ A1 etc

M1 is available if gradient expression is incorrect, provided it is a quotient of two surd expressions and the conjugate of their denominator is used.

SC2 for
$$\frac{\sqrt{5} - \sqrt{3}}{4\sqrt{5} - 2\sqrt{3}} \times \frac{4\sqrt{5} + 2\sqrt{3}}{4\sqrt{5} + 2\sqrt{3}} = \frac{****}{68}$$

Q3	Solution	Mark	Total	Comment
(a)	$\left(\frac{dy}{dx} = \right) 4x^3 + 6x$ when $x = -1$, $\frac{dy}{dx} = -4 - 6 = -10$	M1 A1 m1		one term correct all correct (no +c etc) sub $x = -1$ correctly into "their" $\frac{dy}{dx}$ and
	y-6=-10(x+1)	Alcso	4	evaluate correctly any correct form with $$ simplified to $+$ eg $y = -10x + c$, $c = -4$
(b)(i)	$\frac{x^5}{5} + \frac{3x^3}{3} + 2x$	M1 A1		two terms correct all correct (may have +c)
		m1 A1		clear attempt to use correct limits correctly correct unsimplified must evaluate 2 ⁵ ; (-1) ³ etc
	= 21.6	A1cso	5	$21\frac{3}{5}$; $\frac{108}{5}$ OE
(ii)	(Area of trapezium =) 54	B1		allow 18+36 or 90 – 36
	(Shaded area =) $54 - 21.6$	M1		Area of trapezium – their value from (b)(i)
	= 32.4	A1cso	3	$32\frac{2}{5}; \frac{162}{5}$ OE
	т.	otal	12	

(b)(ii) For M1, allow subtraction of "their" trapezium area from their |(b)(i) value|.

Candidates may use $\int_{-1}^{2} (8x + 14) dx = \left[4x^2 + 14x \right]_{-1}^{2} = 16 + 28 - 4 + 14$ to earn **B1**.

If $\int_{-1}^{2} (ax+b) dx$ is used for any line y = ax+b to find the area of trapezium, then candidates are normally eligible for M1

Candidates must find the area of a trapezium (and not a triangle) to earn M1

Q4	Solution	Mark	Total	Comment
(a)	$(x+1)^2 + (y-3)^2 \dots$	M1 A1		one of these terms correct LHS correct with perhaps extra constant terms
	$(x+1)^2 + (y-3)^2 = 50$	A1	3	terms
(b)(i)	C(-1,3)	B 1√	1	correct or FT from their equation in (a)
(ii)	$(r=)\sqrt{50}$	M1		correct or FT their \sqrt{RHS} provided $RHS > 0$
	$=5\sqrt{2}$	A1	2	provided raise
(c)	$4^{2} + k^{2} + 2 \times 4 - 6k - 40 = 0$ or "their" $(4+1)^{2} + (k-3)^{2} = 50$	M1		sub $x = 4$, correctly into given circle equation (or their circle equation)
	$k^2 - 6k - 16(=0)$ or $(k-3)^2 = 25$ k = -2, k = 8	A1 A1	3	
(d)	$D^2 + 1^2 = \text{"their } r^2 \text{"}$	M1		Pythagoras used correctly with 1 and r
	$D^2 = 50 - 1 = 49$ (distance =) 7	A1	2	Do not accept $\sqrt{49}$ or ± 7
	Total		11	

(a) $(x-1)^2 + (y-3)^2 = (\sqrt{50})^2$ scores full marks.

If final equation is correct then award 3 marks, treating earlier lines with extra terms etc as rough working. If final equation has sign errors then check to see if **M1** is earned.

Example $(x+1)^2 + (y-3)^2 - 40 + 1 + 9 = 0$ earns **M1 A1** but if this is part of preliminary working and final equation is offered as $(x+1)^2 + (y-3)^2 = 50$ then award **M1 A1 A1.**

Example $(x-1)^2 + (y-3)^2 = 50$ earns M1 A0; Example $(x-1)^2 + (y+3)^2 = 50$ earns M0

- (b)(ii) Candidates may still earn A1 here provided RHS of circle equation is 50. Example $(x-1)^2 + (y+3)^2 = 50$ earns M0 in (a) but can then earn M1 A1 for radius = $\sqrt{50} = 5\sqrt{2}$ If no $\sqrt{50}$ seen; "(radius =) $5\sqrt{2}$ " scores SC2.
 - (d) NMS (distance=) 7 scores SC1 since no evidence that exact value of radius has been used.

 A diagram with $\sqrt{50}$ or $5\sqrt{2}$ as hypotenuse and another side = 1 with answer = 7 scores SC2

Q5	Solution	Mark	Total	Comment
(a)	$\left(x+\frac{3}{2}\right)^2$	M1		$(x+1.5)^2$ OE
	$\left(x+\frac{3}{2}\right)^2-\frac{1}{4}$	A1	2	$(x+1.5)^2 - 0.25$ OE
(b) (i)	Vertex $(-1.5, *)$ $(**, -0.25)$	B1√ B1√	2	strict FT "their" -p strict FT "their" q
				Correct vertex is $(-1.5, -0.25)$
(ii)	x = -1.5	B1	1	correct equation in any form
(c)	$(x-2)^2 + 3(x-2)$ or $(x-2+"their"p)^2$	M1		replacing each x by $x-2$
	$y = (x-2)^2 + 3(x-2) + 2 + 4$ or $y = (x-0.5)^2 - 0.25 + 4$ OE	A1		any correct unsimplified form with $y = + 4$ or $y - 4 =$
	$y = x^2 - x + 4$	A1cso	3	
	Total		8	
(b)(i)	Accept coordinates written as $x = -1.5$, $y = -0.25$ OE			

Q6	Solution	Mark	Total	Comment
(a)(i)	$(SA =) \pi r^2 + 2\pi rh$	B1		correct surface area
	$\pi r^{2} + 2\pi r h = 48\pi$ $\Rightarrow 2rh = 48 - r^{2} \Rightarrow h = \dots$	M1		equating "their" SA to 48π and attempt at $h =$
	$h = \frac{48 - r^2}{2r}$	A1	3	$\mathbf{or} h = \frac{24}{r} - \frac{r}{2} \mathbf{OE}$
(ii)	$V = \pi r^2 h = \dots$ $= \pi f(r)$	M1		correct volume expression & elimination of h using "their" (a)(i)
	$V = \pi r^2 \left(\frac{48 - r^2}{2r} \right) = 24\pi r - \frac{\pi}{2} r^3$	A1	2	AG (be convinced)
(b)(i)	$\left(\frac{\mathrm{d}V}{\mathrm{d}r}\right) 24\pi - \frac{3}{2}\pi r^2$	M1 A1	2	one term correct all correct, must simplify r^0
(ii)	$24\pi - \frac{3}{2}\pi r^2 = 0 \Rightarrow r^2 = \frac{48\pi}{3\pi}$	M1		"their" $\frac{dV}{dr} = 0$ and attempt at $r^n =$
	r = 4	A1		from correct $\frac{\mathrm{d}V}{\mathrm{d}r}$
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -\frac{6\pi r}{2}$	B1 √		FT "their" $\frac{dV}{dr}$
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} < 0 \text{when } r = 4 \Rightarrow \text{Maximum}$	A1cso	4	explained convincingly, all working and notation correct
	Total		11	

- (a)(i) For M1, surface area must have two terms with at most one error in one of the terms. Eg $\pi r^2 + \pi r h = 48\pi \implies h = \dots$ earns M1 It is not necessary to cancel π for A1
- (a)(ii) May start again, eg using $2\pi rh = 48\pi \pi r^2 \implies 2\pi r^2 h = 48\pi r \pi r^3 \implies V = \dots$ etc for M1
- **(b)(ii)** Award **B1** for $\frac{d^2V}{dr^2}$ FT "their" $\frac{dV}{dr}$ only if $\frac{dV}{dr} = a + br^2$, $a \neq 0, b \neq 0$

For A1cso candidate must use all notation correctly, have correct derivatives and reason correctly.

Condone use of $\frac{d^2y}{dx^2}$ etc instead of $\frac{d^2V}{dr^2}$ for **B1**\sqrt{ but not for **A1cso.**

May reason correctly using 2 values of r on either side of "their" r = 4 substituted into V or $\frac{dV}{dr}$ for **B1** \checkmark and if reasoning, working and notation are correct they may earn **A1 cso**.

Q7	Solution	Mark	Total	Comment
(a)	y †	M1		cubic curve touching at O – one max, one min (may have minimum at O)
	3 x	A1		shape roughly as shown crossing positive <i>x</i> -axis
		A1	3	3 marked and correct curvature for $x < 0$ and $x > 3$
(b)(i)	$p(4) = 4^2(4-3) + 20$	M1		p(4) attempted or full long division as far as remainder term
	(Remainder) = 36	A1	2	us remainder term
(ii)	$p(-2) = (-2)^2(-2-3) + 20$	M1		p(-2) attempted NOT long division
	$=4 \times (-5) + 20 = 0$ or $-20 + 20 = 0$ therefore $(x + 2)$ is a factor	A1	2	working showing that $p(-2) = 0$ and statement
(iii)	$x^{2} + bx + c$ with $b = -5$ or $c = 10$ $(x+2)(x^{2} - 5x + 10)$	M1 A1	2	by inspection must see product
(iv)	Discriminant of "their" quadratic $= (-5)^2 - 4 \times 10$	M1		be careful that cubic coefficients are not being used
	-15 < 0 so quadratic has no real roots	A1cso		
	(only real root is) –2	B1	3	independent of previous marks
	Total		12	

- (a) Award M1 for clear *intention* to touch at *O* Second A1: allow curve becoming straight but withhold if wrong curvature in 1st or 3rd quadrants.
- **(b)** May expand cubic as $x^3 3x^2 + 20$
- (i) Do not apply ISW for eg "p(4) = 36, therefore remainder is -36"
- Minimum required for statement is "so factor" Powers of -2 must be evaluated: **Example** "p(-2) = -8-12+20=0 therefore factor" scores **M1 A1** Statement may appear first: **Example** "x+2 is factor if p(-2) = 0 & p(-2) = -8-12+20 = 0" scores **M1 A1** However, **Example** "p(-2) = $(-2)^2(-2-3)+20=0$ therefore x+2 is a factor" scores **M1 A0**
- (iii) M1 may also be earned for a full long division attempt, or a clear attempt to find a value for both b and c (even though incorrect) by comparing coefficients.
- (iv) Accept " $b^2 4ac = 25 40 < 0$ so no real roots" for M1 A1cso Discriminant may appear within the quadratic equation formula " $\sqrt{25 40}$ " for M1

Q8	Solution	Mark	Total	Comment
(a)	$x^{2} + (3k-4)x + 13 = 2x + k$ $x^{2} + 3kx - 6x + 13 - k = 0$ $x^{2} + 3(k-2)x + 13 - k = 0$	B1	1	at least one step such as this line AG (be convinced)
(b) (i)	${3(k-2)}^2 - 4(13-k)$	M1		correct discriminant
	$9(k^2-4k+4)-52+4k$	A1		correct and brackets expanded correctly
		A1cso	3	condition must appear before final answer AG Penalise poor use of brackets here even if candidate recovers
(ii)	(9k+4)(k-4)	M1		correct factors or correct use of formula as far as $\frac{32 \pm \sqrt{1600}}{18}$
	CVs are $-\frac{4}{9}$ and 4	A1		condone equivalent fractions here
	$\frac{+}{-\frac{4}{9}}$ $\frac{+}{4}$	M1		use of sign diagram or graph -4/9 4
	$-\frac{4}{9} < k < 4$	A1	4	fractions must be simplified for final mark
	Total		8	
	TOTAL		75	

- **(b)(i)** For M1 must be attempting to use $b^2 4ac$ but *condone poor use of brackets*.
- (b)(ii) For second M1, if critical values are correct then sign diagram or sketch must be correct with correct CVs marked.

However, if CVs are not correct then second M1 can be earned for attempt at sketch or sign diagram but *their CVs* MUST be marked on the diagram or sketch.

Final A1, inequality must have k and no other letter.

Final answer of k < 4 AND $k > -\frac{4}{9}$ (with or without working) scores 4 marks.

(A)
$$-\frac{4}{9} < x < 4$$
 (B) $k < 4$ OR $k > -\frac{4}{9}$ (C) $k < 4$, $k > -\frac{4}{9}$ (D) $-\frac{4}{9} \le k \le 4$

with or without working each score 3 marks (SC3)

Example NMS $\frac{4}{9} < k < 4$ scores M0 (since one CV is incorrect)

Example NMS $k < \frac{72}{18}$, $k < -\frac{8}{18}$ scores **M1 A1 M0** (since both CVs are correct)