AQA

A-LEVEL Mathematics

Pure Core 1 - MPC1
Mark scheme

6360
June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q2	Solution	Mark	Total	Comment
	$\begin{aligned} & \begin{array}{l} \frac{4 \sqrt{5}-2 \sqrt{3}}{\sqrt{5}-\sqrt{3}} \\ \\ \\ \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} \end{array} \\ & \text { (Numerator }=\text {) } 20+4 \sqrt{15}-2 \sqrt{15}-6 \\ & (\text { Denominator }=) \\ & (5-\sqrt{5} \sqrt{3}+\sqrt{5} \sqrt{3}-3=) \\ & \text { (Gradient }=\text {) } \quad 7+\sqrt{15} \end{aligned}$	B1 M1 A1 B1 A1cso	5	or $\frac{2 \sqrt{3}-4 \sqrt{5}}{\sqrt{3}-\sqrt{5}}$ multiplying top \& bottom by conjugate of their denominator $14+2 \sqrt{15}$ must be seen as denominator $\frac{14+2 \sqrt{15}}{2}$
	Total		5	
	NO MISREADS ALLOWED IN THIS QUESTION Condone multiplication by $\sqrt{5}+\sqrt{3}$ instead of $\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$ for M1 only if subsequent working shows multiplication by both numerator and denominator - otherwise M0 Must have $\sqrt{15}$ and not just $\sqrt{3} \sqrt{5}$ for first A1 An error in the denominator such as $5-\sqrt{8}+\sqrt{8}-3=2$ should be given $\mathbf{B 0}$ and it would then automatically lose the final A1cso May use alternative conjugate $\times \frac{-\sqrt{5}-\sqrt{3}}{-\sqrt{5}-\sqrt{3}}$ M1 ; numerator $=-14-2 \sqrt{15}$ A1 etc M1 is available if gradient expression is incorrect, provided it is a quotient of two surd expressions and the conjugate of their denominator is used. $\mathbf{S C} \mathbf{2}$ for $\frac{\sqrt{5}-\sqrt{3}}{4 \sqrt{5}-2 \sqrt{3}} \times \frac{4 \sqrt{5}+2 \sqrt{3}}{4 \sqrt{5}+2 \sqrt{3}}=\frac{* * * *}{68}$			

Q3	Solution	Mark	Total	Comment	
(a)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 4 x^{3}+6 x \\ & \text { when } x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4-6=-10 \end{aligned}$	M1 A1 m1		one term correct all correct (no +c etc) sub $x=-1$ correctly into "their" $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and evaluate correctly	
	$y-6=-10(x+1)$	A1cso	4	any correct form with -- simplified to + $\text { eg } y=-10 x+c, \quad c=-4$	
(b)(i)	$\frac{x^{5}}{5}+\frac{3 x^{3}}{3}+2 x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		two terms correct all correct (may have +c)	
	$\begin{aligned} & \mathrm{F}(2)-\mathrm{F}(-1) \\ & {\left[\frac{32}{5}+8+4\right]-\left[-\frac{1}{5}-1-2\right]} \end{aligned}$	m1 A1		clear attempt to use correct limits correctly correct unsimplified must evaluate $2^{5} ;(-1)^{3}$ etc	
	$=21.6$	A1cso	5	$21 \frac{3}{5} ; \quad \frac{108}{5} \mathbf{O E}$	
(ii)	(Area of trapezium =) 54	B1		allow $18+36$ or 90-36	
	$(\text { Shaded area }=\text {) } 54-21.6$	M1		Area of trapezium - \|their value from (b)(i)	
			3	$32 \frac{2}{5} ; \frac{162}{5}$ OE	
	Total		12		
(b)(ii)	Candidates may use $\int_{-1}^{2}(8 x+14) \mathrm{d} x=\left[4 x^{2}+14 x\right]_{-1}^{2}=16+28-4+14$ to earn B1. If $\int_{-1}^{2}(a x+b) \mathrm{d} x$ is used for any line $y=a x+b$ to find the area of trapezium, then candidates are normally eligible for M1 Candidates must find the area of a trapezium (and not a triangle) to earn M1				

Q4	Solution	Mark	Total	Comment
(a)	$(x+1)^{2}+(y-3)^{2} \ldots$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		one of these terms correct LHS correct with perhaps extra constant terms
	$(x+1)^{2}+(y-3)^{2}=50$	A1	3	
(b)(i)	$C(-1,3)$	B1 \checkmark	1	correct or FT from their equation in (a)
(ii)	$(r=) \sqrt{50}$	M1		correct or $\mathbf{F T}$ their $\sqrt{R H S}$ provided RHS >0
	$=5 \sqrt{2}$	A1	2	
(c)	$4^{2}+k^{2}+2 \times 4-6 k-40=0$ or "their" $(4+1)^{2}+(k-3)^{2}=50$	M1		sub $x=4$, correctly into given circle equation (or their circle equation)
	$\begin{aligned} & k^{2}-6 k-16(=0) \quad \text { or } \quad(k-3)^{2}=25 \\ & k=-2, k=8 \end{aligned}$	A1 A1	3	
(d)	$D^{2}+1^{2}=\text { "their } r^{2} "$	M1		Pythagoras used correctly with 1 and r
	$\begin{aligned} D^{2}=50-1 & =49 \\ & (\text { distance }=) 7 \end{aligned}$	A1	2	Do not accept $\sqrt{49}$ or ± 7
	Total		11	
(a)	$(x--1)^{2}+(y-3)^{2}=(\sqrt{50})^{2}$ scores full ma If final equation is correct then award 3 marks If final equation has sign errors then check Example $(x+1)^{2}+(y-3)^{2}-40+1+9=0$ final equation is offered as $(x+1)^{2}+(y-3)$ Example $(x-1)^{2}+(y-3)^{2}=50$ earns M1	s. s, treati see if earns M $=50$ th 0; Exa	earlier 1 is earn A1 but award ple (x	lines with extra terms etc as rough working. d. f this is part of preliminary working and M1 A1 A1. $-1)^{2}+(y+3)^{2}=50 \text { earns M0 }$
(b)(ii)	Candidates may still earn A1 here provided Example $(x-1)^{2}+(y+3)^{2}=50$ earns M0 If no $\sqrt{50}$ seen; " (radius $=) 5 \sqrt{2}$ " scores	HS of (a) but C2 .	cle equ an then	tion is 50 . arn M1 A1 for radius $=\sqrt{50}=5 \sqrt{2}$
(d)	NMS (distance=) 7 scores $\mathbf{S C 1}$ since no evidence that exact value of radius has been used.			

Q5	Solution	Mark	Total	Comment
(a)	$\left(x+\frac{3}{2}\right)^{2}$	M1 A1	2	$(x+1.5)^{2} \mathbf{O E}$ $(x+1.5)^{2}-0.25 \quad \mathbf{O E}$
(b) (i)	Vertex (-1.5, *) $(* *,-0.25)$	$\begin{aligned} & \mathbf{B 1} \checkmark \\ & \text { B1 } \checkmark \end{aligned}$	2	strict $\mathbf{F T}$ "their" $-p$ strict FT "their" q Correct vertex is $(-1.5,-0.25)$
(ii)	$x=-1.5$	B1	1	correct equation in any form
(c)	$\begin{aligned} & (x-2)^{2}+3(x-2) \\ & \text { or }(x-2+\text { "their" } p)^{2} \end{aligned}$	M1		replacing each x by $x-2$
	$\begin{aligned} & y=(x-2)^{2}+3(x-2)+2+4 \text { or } \\ & y=(x-0.5)^{2}-0.25+4 \quad \text { OE } \end{aligned}$	A1		any correct unsimplified form with $y=\ldots+4$ or $y-4=\ldots$
	$y=x^{2}-x+4$	A1cso	3	
	Total		8	
(b)(i)	Accept coordinates written as $x=-1.5, y=-0.25$ OE			

Q6	Solution	Mark	Total	Comment
(a)(i)	$\begin{aligned} & (S A=) \pi r^{2}+2 \pi r h \\ & \pi r^{2}+2 \pi r h=48 \pi \\ & \Rightarrow 2 r h=48-r^{2} \Rightarrow h=\ldots \\ & h=\frac{48-r^{2}}{2 r} \end{aligned}$	B1 M1 A1	3	correct surface area equating "their" $S A$ to 48π and attempt at $h=$ or $h=\frac{24}{r}-\frac{r}{2}$ OE
	$\begin{aligned} V & =\pi r^{2} h=\ldots \\ & =\pi f(r) \\ V & =\pi r^{2}\left(\frac{48-r^{2}}{2 r}\right)=24 \pi r-\frac{\pi}{2} r^{3} \end{aligned}$	M1 A1	2	correct volume expression \& elimination of h using "their" (a)(i) AG (be convinced)
(b)(i)	$\left(\frac{\mathrm{d} V}{\mathrm{~d} r}=\right) 24 \pi-\frac{3}{2} \pi r^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	one term correct all correct, must simplify r^{0}
(ii)	$24 \pi-\frac{3}{2} \pi r^{2}=0 \Rightarrow r^{2}=\frac{48 \pi}{3 \pi}$ $r=4$	M1 A1		"their" $\frac{\mathrm{d} V}{\mathrm{~d} r}=0$ and attempt at $r^{n}=\ldots$ from correct $\frac{\mathrm{d} V}{\mathrm{~d} r}$
	$\begin{gathered} \frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}=-\frac{6 \pi r}{2} \\ \frac{\mathrm{~d}^{2} V}{\mathrm{~d} r^{2}}<0 \quad \text { when } r=4 \Rightarrow \text { Maximum } \end{gathered}$	B1 $\sqrt{ }$ A1cso	4	FT "their" $\frac{\mathrm{d} V}{\mathrm{~d} r}$ explained convincingly, all working and notation correct
	Total		11	
(a)(i)	For M1, surface area must have two terms with at most one error in one of the terms. Eg $\pi r^{2}+\pi r h=48 \pi \Rightarrow h=\ldots$ earns M1 It is not necessary to cancel π for A1			
(a)(ii)	May start again, eg using $2 \pi r h=48 \pi-\pi r^{2} \Rightarrow 2 \pi r^{2} h=48 \pi r-\pi r^{3} \quad \Rightarrow V=\ldots \quad$ etc for M1			
(b)(ii)	Award B1 \checkmark for $\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}} \mathrm{FT}$ "their" $\frac{\mathrm{d} V}{\mathrm{~d} r}$ only if $\frac{\mathrm{d} V}{\mathrm{~d} r}=a+b r^{2}, a \neq 0, b \neq 0$ For A1cso candidate must use all notation correctly, have correct derivatives and reason correctly. Condone use of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ etc instead of $\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}$ for $\mathbf{B} 1 \checkmark$ but not for A1cso.			
	May reason correctly using 2 values of r on either side of "their" $r=4$ substituted into V or $\frac{\mathrm{d} V}{\mathrm{~d} r}$ for $\mathbf{B} 1$ and if reasoning, working and notation are correct they may earn A1 cso.			

Q7	Solution
(a)	Mark

Q8	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & x^{2}+(3 k-4) x+13=2 x+k \\ & x^{2}+3 k x-6 x+13-k=0 \\ & x^{2}+3(k-2) x+13-k=0 \end{aligned}$	B1	1	at least one step such as this line AG (be convinced)
(b) (i)	$\begin{aligned} & \{3(k-2)\}^{2}-4(13-k) \\ & 9\left(k^{2}-4 k+4\right)-52+4 k \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		correct discriminant correct and brackets expanded correctly condition must appear before final answer
	$9 k^{2}-32 k-16<0$	A1cso	3	AG Penalise poor use of brackets here even if candidate recovers
(ii)	$(9 k+4)(k-4)$	M1		correct factors or correct use of formula as far as $\frac{32 \pm \sqrt{1600}}{18}$
	CVs are $-\frac{4}{9}$ and 4	A1		condone equivalent fractions here
	$\begin{array}{lll} + & - & + \\ \hline-\frac{4}{9} & 4^{1} \end{array}$	M1		use of sign diagram or graph
	$-\frac{4}{9}<k<4$		4	fractions must be simplified for final mark
	Total		8	
	TOTAL		75	
$\begin{aligned} & \text { (b)(i) } \\ & \text { (b)(ii) } \end{aligned}$	For M1 must be attempting to use $b^{2}-4 a c$ b For second M1, if critical values are correct t marked. However, if CVs are not correct then second their CVs MUST be marked on the diagram Final A1, inequality must have k and no othe Final answer of $k<4$ AND $k>-\frac{4}{9}$ (wit (A) $-\frac{4}{9}<x<4$ (B) $k<4$ OR $k>$ with or without working each score 3 marks Example NMS $\frac{4}{9}<k<4$ scores M0 (since Example NMS $k<\frac{72}{18}, k<-\frac{8}{18}$ sco	but cond hen sign M1 can or sketch r letter. th or wit $-\frac{4}{9}$ (SC3) one CV res M1	ne poor diagram e earned out work C) $k<4$ is incorre 1 M0	use of brackets. or sketch must be correct with correct CVs for attempt at sketch or sign diagram but ing) scores 4 marks . , $k>-\frac{4}{9}$ (D) $-\frac{4}{9} \leq k \leq 4$ ct) since both CVs are correct)

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

