

Cambridge IGCSE

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

May/June 2016

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

[Total: 10]

1	(a)	mat	each of the following, give the name of an element from Period 2 (lithium to neon), whaches the description. ments may be used once, more than once or not at all.	iich
		(i)	an element which is gaseous at room temperature and pressure	
				[1]
		(ii)	an element which forms an oxide that is a reactant in photosynthesis	
				[1]
		(iii)	an element that is a product of photosynthesis	
				[1]
		(iv)	an element that makes up approximately 78% by volume of the air	
				[1]
		(v)	an element which has atoms with a full outer shell of electrons	
				[1]
		(vi)	an element which exists as both diamond and graphite	
				[1]
	((vii)	an element that reacts vigorously with cold water	
				[1]
	(\	viii)	a soft metallic element which is stored in oil	
				[1]
	(h)	Giv	e the formula of a compound that contains	
	(6)			F41
		(i)	only boron and oxygen,	
		(ii)	only lithium and nitrogen.	[1]

2	(a) (i)	Define the term atomic number.	
		[1]
	(ii)	Define the term <i>nucleon number</i> .	
		[2	2]

(b) The table shows the number of protons, neutrons and electrons in some atoms or ions.

Complete the table. The first line is given as an example.

particle	number of protons	number of electrons	number of neutrons	symbol or formula
А	6	6	6	¹² ₆ C
В	12	12	12	
С	8			¹⁶ ₈ O ²⁻
D	11	10	13	

[6]

[Total: 9]

2	Callium ic a	motallia	alamont in	Group II	l It had	cimilar n	roportion to	aluminium
3	Gallium is a	ı metamo	element in	Group II	ı. Il Has	Sillillai pi	roperiles io	alullillillulli.

(a) (i)	Describe the structure and bonding in a metallic element.
	You should include a labelled diagram in your answer.

		[3]
	(ii)	Explain why metallic elements such as gallium are good conductors of electricity.
		[1]
(b)	Giv	e the formula of
	gall	ium(III) chloride,
	gall	ium(III) sulfate. [2]
(c)	Gal	lium(III) oxide, Ga ₂ O ₃ , is amphoteric.
	(i)	Write the chemical equation for the reaction between gallium(III) oxide and dilute nitric acid to form a salt and water only.
		[2]
	(ii)	The reaction between gallium(III) oxide and sodium hydroxide solution forms only water and a salt containing the negative ion ${\rm Ga_2O_4^{2-}}$.
		Write the chemical equation for this reaction.
		[2]
(d)	Allo	ys of gallium and other elements are often more useful than the metallic element itself.
	Sug	gest two reasons why alloys of gallium are more useful than the metallic element.
		[2]
		[Total: 12]

4 Hydrogen can be manufactured from methane by steam reforming.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

The reaction is carried out using a nickel catalyst at temperatures between 700 $^{\circ}$ C and 1100 $^{\circ}$ C and using a pressure of one atmosphere.

The forward reaction is endothermic.

(a)	Wh	at is meant by the term catalyst?	
			[2]
(b)	Sug	gest two reasons why a temperature lower than 700°C is not used.	
(c)	Sug	gest one advantage of using a pressure greater than one atmosphere.	
			[1]
(d)		gest one disadvantage of using a pressure greater than one atmosphere.	[1]
(e)		drogen can also be manufactured by electrolysis. The electrolyte is concentrated aquectium chloride. The electrodes are inert.	ous
	The	e products of electrolysis are hydrogen, chlorine and sodium hydroxide.	
	(i)	Define the term <i>electrolysis</i> .	
	(ii)	Name a substance that can be used as the inert electrodes.	[2]
			[1]
	(iii)	Write an ionic half-equation for the reaction in which hydrogen is produced.	
			[1]
	(iv)	Where is hydrogen produced in the electrolytic cell?	F.4.
			[1]

[Total: 18]

	(v)	Describe a test for chlorine.	
		test	
		result	[2]
(f)		e electrolysis of concentrated aqueous sodium chloride can be represented by the follow rd equation.	ving
		sodium chloride + water \rightarrow sodium hydroxide + hydrogen + chlorine	
	Cor	nstruct a chemical equation to represent this reaction. Do not include state symbols.	
			[2]
(g)	Sta	te one use of	
	chlo	orine,	
	soc	lium hydroxide,	
	hyd	Irogen.	
			[3]

5	(a)	Hydrocarbons a	are compounds	which contain	hydrogen	and carbon only
---	-----	----------------	---------------	---------------	----------	-----------------

- 10 cm³ of a gaseous hydrocarbon, C_xH_y, are burned in 100 cm³ of oxygen, which is an excess of oxygen.
- After cooling to room temperature and pressure, there is 25 cm³ of unreacted oxygen, 50 cm³ of carbon dioxide and some liquid water.

All volumes are measured under the same conditions of temperature and pressure.

(i)	What is meant by an excess of oxygen?	
		[1]
(ii)	What was the volume of oxygen that reacted with the hydrocarbon?	
		[1]
(iii)	Complete the table below to express the smallest whole number ratio of	

....

volume of hydrocarbon reacted : volume of oxygen reacted

volume of carbon dioxide produced

	volume of hydrocarbon reacted	volume of oxygen reacted	volume of carbon dioxide produced
smallest whole number ratio of volumes			

[1]

(iv) Use your answer to (a)(iii) to find the mole ratio in the equation below. Complete the equation and deduce the formula of the hydrocarbon.

......
$$C_xH_v(g) +O_2(g) \rightarrowCO_2(g) +H_2O(l)$$

formula of hydrocarbon =

[2]

(b)	Cracking is used to convert long chain alkanes into shorter chain alkanes and alkenes.	Alkenes
	are unsaturated compounds.	

Decane, $C_{10}H_{22}$, can be cracked to give propene and one other product.

(i) Complete the chemical equation.

$$C_{10}H_{22} \rightarrow C_3H_6 + \dots$$
 [1]

(ii) What is meant by the term unsaturated?

r.	
11	4.7
	i I

(iii) Describe a test to show that propene is an unsaturated compound.

test	
result	
	[2]

(c) Propene can be polymerised. The only product is polypropene. The equation for the polymerisation is:

$$nC_3H_6 \longrightarrow \begin{bmatrix} CH_3 & H \\ | & | \\ C & C \\ | & | \\ H & H \end{bmatrix}_n$$

(i)	Name the type	of polymerisation	that occurs.
-----	---------------	-------------------	--------------

r	F 4 7
	11!

(ii) Deduce the maximum mass of polypropene that could be produced from 1 kg of propene.

															kα	٢1	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	ινg	ľ,	J

(iii) Give the empirical formula of

propene,	
polypropene.	
1 21 1	[2]

[Total: 13]

Zin	c is e	extracted from an ore called zinc blende, which consists mainly of zinc sulfide, ZnS.											
(a)	(i)	The zinc sulfide in the ore is first converted into zinc oxide.											
		Describe how zinc oxide is made from zinc sulfide.											
		[1]											
	(ii)	Write a chemical equation for the reaction in (a)(i).											
		[2]											
(b)		c oxide is converted into zinc. Zinc oxide and coke are fed into a furnace. Hot air is blown the bottom of the furnace.											
	Zinc has a melting point of 420 °C and a boiling point of 907 °C. The temperature furnace is over 1000 °C.												
	(i)	Explain how zinc oxide is converted into zinc. Your answer should include details of how the heat is produced and equations for all the reactions you describe.											
		[3]											
	(ii)	Explain why the zinc produced inside the furnace is a gas.											
		[1]											
((iii)	State the name of the physical change for conversion of gaseous zinc into molten zinc.											
		[1]											

		. •		
(c)	Rusting of steel can be	pe prevented by coating the stee	el with a layer of zinc.	
	-	electron transfer, why steel do steel is exposed to air and water	pes not rust even if the layer of er.	f zinc is
				[4]
(d)	When a sample of stoiron(II) chloride, FeC	eel is added to dilute hydrochlor $l_{\scriptscriptstyle 2}$, is formed.	ic acid, an aqueous solution of	
	When a sample of ru iron(III) chloride, Fe0	st is added to dilute hydrochloric ${\it Cl}_3$, is formed.	c acid, an aqueous solution of	
	(i) Aqueous sodium iron(III) chloride	hydroxide is added to the solut	ions of iron(II) chloride and	
	Complete the tak	ble below, showing the observat	ions you would expect to make.	
		iron(II) chloride solution	iron(III) chloride solution	
	aqueous sodium hydroxide			

[2]

Solutions of iron(II) chloride and iron(III) chloride were added to solutions of potassium iodide and acidified potassium manganate(VII). The results are shown in the table.

	iron(II) chloride solution	iron(III) chloride solution
potassium iodide solution	no change	solution turns from colourless to brown
acidified potassium manganate(VII) solution	solution turns from purple to colourless	no change

(ii)	What types of substance cause potassium iodide solution to turn from colourless to brown?
	[1]
(iii)	What \textit{types} of substance cause acidified potassium manganate(VII) solution to turn from purple to colourless?
	[1]
(iv)	Which ion in iron(III) chloride solution causes potassium iodide solution to turn from colourless to brown?
	[1]
(v)	Which ${\bf ion}$ in iron(II) chloride solution causes acidified potassium manganate(VII) solution to turn from purple to colourless?
	[1]
	[Total: 18]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

 	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
=			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	南	bromine 80	53	П	iodine 127	85	At	astatine -			
5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	nolonium	116		/ermorium -
>								"0												<u> </u>
2																		114	Εl	erovium -
																				-
								<u>m</u>										112	ت د	copernicium -
																				-
														_						
]																	E
	- I	hydroger 1							26	Fe	iron 56	44	Ru	rutheniun 101	92	Os	osmium 190	108	H	hassium
						1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
				pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
		Key	tomic number	mic sym	name tive atomic ma				23	>	vanadium 51	41	g	niobium 93	73	ā	tantalum 181	105	op O	dubnium
				ato	rela				22	ı=	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	弘	rutherfordium -
						•			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ва	barium 137	88	Ra	radium
_			е	<u> </u>	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	ъ.	francium -
				II	II	II	II	II	III	II	III IV VI VII VII	II	II	II	III IV V VI VI VI VI VI	II	III	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1

71 Lu	lutetium 175	103	ב	lawrencium	ı
02 Q	ytterbium 173	102	%	nobelium	ı
e9 Tm	thulium 169	101	Md	mendelevium	1
68 Fr	erbium 167	100	Fm	ferminm	I
67 H0	holmium 165	66	Es	einsteinium	ı
66 Dy	dysprosium 163	86	ర్	californium	ı
65 Tb	terbium 159	26	BK	berkelium	ı
Gd Gd	gadolinium 157	96	Cm	curium	ı
e3 Eu	europium 152	92	Am	americium	I
62 Sm	samarium 150	94	Pu	plutonium	ı
Pm Pm	promethium	93	ď	neptunium	ı
[©] Z	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Ce Ce	cerium 140	06	T	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)