

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

Paper 3 (Extend	ded)	Octo	ober/November 2015 1 hour 15 minutes
CHEMISTRY			0620/32
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1

Jse your copy of the Periodic Table to help you answer some of these questions.	Use you
a) Predict the formulae of the following compounds.	(a) Pre
(i) nitrogen fluoride	(i)
(ii) phosphorus sulfide	(ii)
[2]	
b) Deduce the formulae of the following ions.	(b) Dec
(i) selenide	(i)
(ii) gallium[2]	(ii)
c) Use the following ions to determine the formulae of the compounds.	(c) Use
ions OH ⁻ Cr ³⁺ Ba ²⁺ SO ₄ ²⁻	ion
compounds	cor
(i) chromium(III) sulfate	(i)
(ii) barium hydroxide	(ii)
[2]	
[Total: 6]	

2	(a)		uted air contains two oxides of carbon and two oxides of nitrogen. A major source of these utants is motor vehicles.
		(i)	Describe how carbon dioxide and carbon monoxide are formed in motor vehicle engines.
		(ii)	[3]
		(ii)	State one adverse effect of each of these gases.
		(iii)	Nitrogen monoxide, NO, is released by motor vehicle exhausts.
			Explain how nitrogen monoxide is formed in motor vehicle engines.
		(iv)	$\label{eq:continuous} \end{matrix} \begin{minipage}{0.5\textwidth} \end{matrix} \begin{minipage}{0.5\textwidth} \end{matrix} \begin{minipage}{0.5\textwidth} \begin{minipage}{0.5\textwi$
			Suggest an explanation why this happens. [1]
	(b)		dict the possible adverse effect on the environment when this non-metal oxide, NO_2 , reacts water and oxygen.
			[2]
	(c)		v are the amounts of carbon monoxide and nitrogen monoxide emitted by modern motor icles reduced? Include an equation in your answer.
			101
			[3]
			110ldl. 131

3	Two of the	main uses	s of zinc are	for galvanising	and for making alloys.
•	1 110 01 1110	man acc	or Enio are	ioi gairainonig	and for maring and yo

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore.

(a)	Stage 1 Zinc oxide is made from zinc blende.
	Describe how this is done and write a word equation for the reaction.
	[2]
(b)	Stage 2 Zinc oxide is reduced to zinc.
	Write a word equation for the reduction of zinc oxide by coke.
	[1]
(c)	The zinc produced by this process is impure. It can be purified by electrolysis using a method which is similar to the purification of copper. Under the conditions used in the process, zinc is the product at the negative electrode (cathode).
	Complete the following description of this purification.
	The electrolyte is aqueous [1]
	The negative electrode (cathode) is made of
	The positive electrode (anode) is impure zinc.
	The equation for the reaction at the cathode is
	The equation for the reaction at the anode is
	Explain why the concentration of the electrolyte does not change.
	[2]

(d)	Bra	ss is an alloy which contains zinc.
	(i)	Name the other metal in brass.
		[1]
	(ii)	Suggest two reasons why an alloy such as brass is preferred to either of its constituent metals.
		[2]
(e)	pie	In experiment to investigate the rate of rusting of steel, three pieces of steel were used. One ce of steel was completely coated with copper, one piece completely coated with zinc and third piece was left uncoated. All three pieces were left exposed to the atmosphere.
	(i)	Explain why the uncoated piece started to rust.
		[1]
	(ii)	The coating on both of the other two pieces was scratched, exposing the steel.
	(11)	
		exposed steel thin layer does not rust of zinc
		steel
		The piece of steel coated with zinc still did not rust but the copper-coated piece of steel rusted very rapidly.
		Explain these observations in terms of the formation of ions and the transfer of electrons.
		[4]
		[Total: 17]

4	(a)	Propane	reacts	with	chlorine	to	form	a	mixture	of	chloropropanes.	This	is a	photoche	mica
		reaction.													

What is meant by the p	hrase photochemical reaction?	
		[1]

(ii) The products of this reaction include two isomers, one of which has the following structural formula.

Draw the structural formula of the other isomer.

		[1]
(iii)	Explain why these two different compounds are isomers.	
		. [2]

(b) Bond breaking is an endothermic change and bond forming is an exothermic change.

Bond energy is the amount of energy in kJ/mol needed to break one mole of the specified bond.

Use the following bond energies to determine whether this reaction is exothermic or endothermic. You must show your reasoning.

bond	bond energies in kJ/mol
C-C1	338
C–H	412
Cl-Cl	242
H-C1	431
C–C	348

												[0]
 	13											

(c)	(i)	Chloropropane can be hydrolysed to propanol, CH ₃ CH ₂ CH ₂ OH, by sodium hydroxide.	
		Write the equation for this reaction.	[0]
	(ii)	Propanol can be dehydrated. It loses a water molecule to form a hydrocarbon.	[2]
	()	Give the name and structural formula of this hydrocarbon.	
		name	
		structural formula	
			[2]
	(iii)	Propanol is oxidised to a carboxylic acid by acidified potassium manganate(VII).	
		Deduce the name of this acid.	
			[1]
(d)	Pro	panol reacts with methanoic acid to form the ester propyl methanoate.	
		$CH_3CH_2CH_2OH + HCOOH \rightarrow HCOOCH_2CH_2CH_3 + H_2O$	
	4.0	g of methanoic acid was reacted with 6.0 g of propanol.	
	(i)	Calculate the M_r of methanoic acid =	[1]
	(ii)	Calculate the M_r of propanol =	[1]
	(iii)	Determine which one is the limiting reagent. Show your reasoning.	
			[2]
	(iv)	Calculate the maximum yield in grams of propyl methanoate, $M_r = 88$.	
			[1]
		[Total:	
		[retain	. 1

[Total: 10]

5 Iron is extracted from its ore, hematite, in a blast furnace.

Substances added to the furnace are:

- iron ore, hematite, containing impurities such as silica, SiO₂
- air
- coke, C
- limestone, CaCO₃

Substances formed in the blast furnace are:

- molten iron
- molten slag
- waste gases such as carbon dioxide

(a)	State the two functions of the coke used in the blast furnace.							
(b)	Write an equation for the conversion of hematite, Fe ₂ O ₃ , to iron.	[0]						
(c)	Explain how the silica impurity is removed and separated from the molten iron.	[2]						
(d)	The molten iron from the furnace is impure. It contains impurities which include the element carbon.							
	Explain how the carbon is removed. Include an equation in your answer.							
		[3]						

6 The table below shows the elements in the third period of the Periodic Table, the number of electrons in their outer energy level, their oxidation state in their common compounds and their melting points.

element	Na	Mg	Al	Si	Р	S	Cl	Ar
number of outer electrons	1	2	3	4	5	6	7	8
oxidation state	+1	+2	+3	+4/-4	-3	- 2	– 1	0
melting point/°C	98	650	660	1414	317	115	-101	-189

(a)	Describe and explain the variation in oxidation state across the period.	
		[3]
(b)	The first three elements, Na, Mg and Al, are metals.	
	Describe the structure of a typical metal.	
		[3]
(c)	Explain why Na, Mg and Al are good conductors of electricity.	
		[1]
(d)	Which element exists as diatomic molecules of the type X ₂ ?	
		[1]
(e)	Silicon has a similar structure to diamond.	
	Explain why silicon has the highest melting point in the period.	
		[2]

(†)	Sodium chloride is a crystalline solid with a high melting point. It dissolves in water to give a neutral solution. Phosphorus trichloride is a liquid at room temperature. It reacts with water to form an acidic solution.
	Suggest an explanation for these differences in properties.
	[2]
(g)	Describe how you could show that magnesium oxide is a basic oxide and not an amphoteric oxide.
	[2]
(h)	Draw a dot-and-cross diagram showing the bonding in magnesium oxide. Show outer electrons only.

[3]

[Total: 17]

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne on 10	40 Ar Argon 18	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	II/		19 F luorine	35.5 C1 Chlorine	80 Br Bromine 35	127 — — — — — — — — — — — — — — — — — — —	At Astatine 85		173 Yb Ytterbium 70	Nobelium
	N		16 Oxygen 8	32 S Sulfur	79 Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	^		14 N itrogen 7	31 P Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	>		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99
	=		11 Boron 5	27 A 1 Aluminium 13	70 Ga Gallium	115 n ndium	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
		'			65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium
Group					59 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gre	,				59 Co Cobalt 27	103 Rh Rhodium 45	192 F Iridium 77		Sm Samarium 62	Pu Plutonium 94
		1 H Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm Promethium 61	Neptunium
					55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					51 V Vanadium 23	Niobium 41	181 Ta Tantalum		140 Ce Cerium 58	232 Th Thorium
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
					45 Sc Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 AC Actinium 89	d series series	a = relative atomic massX = atomic symbolb = proton (atomic) number
	=		9 Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	-71 Lanthanoid series -103 Actinoid series	<i>a</i> ★ <i>a</i>
	_		7 Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L 190-103	Key

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.