

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/33

Paper 3 (Extended)

October/November 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

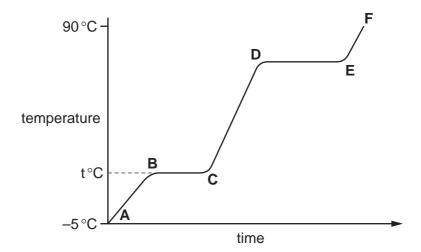
Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 12.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

For	each of the following elements give one physical property and one chemical property.
(a)	bromine (Br ₂)
	physical property
	chemical property
	[2]
(b)	carbon _{graphite} (C)
	physical property
	chemical property[2]
	[2]
(c)	manganese (Mn)
	physical property
	chemical property
	[2]
	[Total: 6]

- **2** Compound X is a colourless liquid at room temperature.
 - (a) A sample of pure X was slowly heated from -5.0 °C, which is below its melting point, to 90 °C, which is above its boiling point. Its temperature is measured every minute and the results are represented on the graph.

(i) Complete the equation for the equilibrium present in the region **BC**.

$$X(s) \rightleftharpoons \dots$$
 [1]

(ii) What is the significance of temperature t°C?

TA CONTRACTOR OF TAXABLE PROPERTY OF TAXABLE P

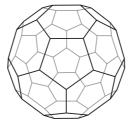
(iii) What is the physical state of compound X in the region **EF**?

(iv) What would be the difference in the region **BC** if an impure sample of X had been used?


[1]
נין

(b) Compound X is a hydrocarbon. It contains 85.7% of carbon. The mass of one mole of X is 84 g.

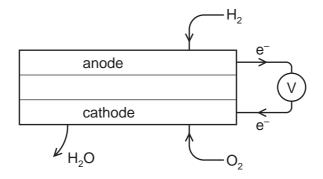
(i) What is the percentage of hydrogen in the compound ?


(ii) Calculate the empirical formula of X. Show your working.

(iii) What is the molecular formula of compound X?

[Total: 9]

3 In 1985 the fullerenes were discovered. They are solid forms of the element carbon. The structure of the C_{60} fullerene is given below.

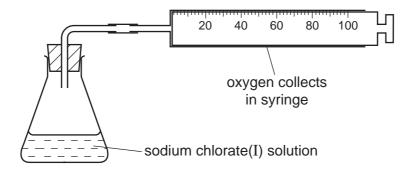


(a)	(i)	In the C ₆₀ fullerene, how many other carbon atoms is each carbon atom bonded to?
	(ii)	Another fullerene has a relative molecular mass of 840. How many carbon atoms are there in one molecule of this fullerene? [1]
		[1]
(b)	are Des	erenes are soluble in liquid hydrocarbons such as octane. The other solid forms of carbon insoluble. Scribe how you could obtain crystals of fullerenes from soot which is a mixture of fullerenes of the other solid forms of carbon.
		ro1
		[3]
(c)	A m	nixture of a fullerene and potassium is an excellent conductor of electricity.
	(i)	Which other form of solid carbon is a good conductor of electricity?
		[1]
	(ii)	Explain why metals, such as potassium, are good conductors of electricity.
	(iii)	The mixture of fullerene and potassium has to be stored out of contact with air. There are substances in unpolluted air which will react with potassium.
		Name two potassium compounds which could be formed when potassium is exposed to air.
		[2]
		[Total: 10]

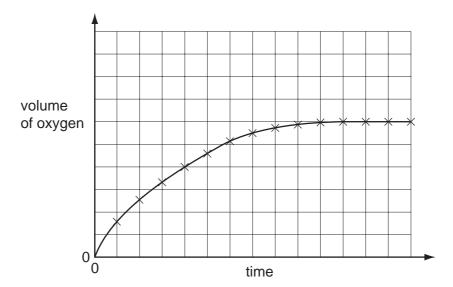
A fuel cell produces electrical energy by the oxidation of a fuel by oxygen.

The fuel is usually hydrogen but methane and methanol are two other fuels which may be used.

A diagram of a hydrogen fuel cell is given below.



(a)	When the fuel is hydrogen, the only product is water. What additional product would be formed if methane was used?	
		[1]
(b)	Write the equation for the chemical reaction that takes place in a hydrogen fuel cell.	
		[1]
(c)	(i) At which electrode does oxidation occur? Explain your choice.	
		[1]
	(ii) Write an ionic equation for the reaction at this electrode.	
		[2]
(d)	Fuel cells are used to propel cars. Give two advantages of a fuel cell over a gasoline-fuelled engine.	
		[2]
	[Tota	l: 7]


5 (a) Sodium chlorate(I) decomposes to form sodium chloride and oxygen. The rate of this reaction is very slow at room temperature provided the sodium chlorate(I) is stored in a dark bottle to prevent exposure to light.

$$2NaClO \rightarrow 2NaCl + O_2$$

The rate of this decomposition can be studied using the following experiment.

Sodium chlorate(I) is placed in the flask and $0.2\,g$ of copper(II) oxide is added. This catalyses the decomposition of the sodium chlorate(I) and the volume of oxygen collected is measured every minute. The results are plotted to give a graph of the type shown below.

(i) Explain why the gradient (slope) of this graph decreases	i with time
--	-------------

.....

(ii) Cobalt(II) oxide is a more efficient catalyst for this reaction than copper(II) oxide. Sketch, on the grid, the graph for the reaction catalysed by cobalt(II) oxide. All other conditions were kept constant. [2]

(i	iii)	What can you deduce from the comment that sodium ${\sf chlorate}(I)$ has to be shielded from light?
		[1]
(i	iv)	Explain, in terms of collisions between particles, why the initial gradient would be steeper if the experiment was repeated at a higher temperature.
		[3]
(b)	The	ions present in aqueous sodium chloride are Na ⁺ (aq), Cl ⁻ (aq), H ⁺ (aq) and OH ⁻ (aq).
		electrolysis of concentrated aqueous sodium chloride forms three products. They are rogen, chlorine and sodium hydroxide.
	(i)	Explain how these three products are formed. Give ionic equations for the reactions at the electrodes.
		[4]
	(ii)	If the solution of the electrolyte is stirred, chlorine reacts with sodium hydroxide to form sodium chlorate(I), sodium chloride and water. Write an equation for this reaction.
		$\mathrm{C}l_2$ +NaOH \rightarrow + +
		[Total: 14]

6

		m and strontium are very reactive metals at the top of the reactivity series. Because their ve different charges, their compounds behave differently when heated.
(a)		e formulae of the ions of these two elements are Rb ⁺ and Sr ²⁺ . Is plain why these metals, which are in different groups, form ions which have different charges.
	•••••	
		[2]
(b)		ontium carbonate is similar to calcium carbonate. It is insoluble in water and it decomposes en heated. Rubidium carbonate is soluble in water and does not decompose when heated.
	(i)	Describe a method to prepare a pure sample of the insoluble salt, strontium carbonate, by precipitation.
		[4]
	(ii)	Complete the equation for the decomposition of strontium carbonate.
		$SrCO_3 \rightarrow \dots + \dots$ [1]
(c)	Met	tal nitrates decompose when heated.
	(i)	Rubidium nitrate decomposes as follows:
		$2RbNO_3 \rightarrow 2RbNO_2 + O_2$
		What is the name of the compound RbNO ₂ ?
		[1]
	(ii)	The nitrates of most other metals decompose in a different way. Complete the equation for the decomposition of strontium nitrate.
		$Sr(NO_3)_2 \rightarrow \dots + 4NO_2 + \dots$
		[2]
		[Total: 10]

7

Butane is oxidised to a mixture of carboxylic acids by oxygen in the presence of a catalyst. The acids formed are methanoic acid, ethanoic acid and propanoic acid – the first three members

of the c	carboxylic acid homologous series.
(a) (i)	Give the name and structural formula of the fourth member of this series.
	name
	structural formula showing all the atoms and bonds
	[3]
(ii)	State three characteristics of a homologous series.
	[3]
(iii)	All members of this series are weak acids.
	What is meant by the term weak acid?
	, and the second
	[3]
	rboxylic acids react with alcohols to form esters. Ethanol reacts with ethanoic acid to form ester ethyl ethanoate, $\mathrm{CH_3COOCH_2CH_3}$.
(i)	Give the name and formula of the ester which is formed from methanol and propanoic acid.
	name
	formula
	[2]
(ii)	What is the name of the ester which has the formula CH ₃ COOCH ₃ ?
	[1]

[Total: 14]

(c) (i	Complete the equation for the oxidation of butane to propanoic acid.	
	$3C_4H_{10} +H_2O$	[1]
(ii	Name another compound which can be oxidised to propanoic acid.	
		[1]

[Total: 10]

8	(a)	Describe how cobalt chloride paper can be used to test for the presence of water.
		[2]
	(b)	Complete the description of the preparation of crystals of the soluble salt, cobalt(II) chloride-6-water, $CoCl_2$.6H ₂ O, from the insoluble base, cobalt(II) carbonate.
		$CoCO_3(s) + 2HCl(aq) \rightarrow CoCl_2(aq) + CO_2(g) + H_2O(l)$
		50cm^3 of dilute hydrochloric acid, concentration $2.2\text{mol/dm}^3,$ was heated and cobalt(II)
		carbonate was added in small amounts until
		[4]
	(c)	6.31 g of cobalt(II) chloride-6-water crystals were obtained. Calculate the percentage yield to 1 decimal place.
		number of moles of HCl in $50 cm^3$ of acid, concentration $2.2 mol/dm^3 = \dots$
		maximum number of moles of $CoCl_2.6H_2O$ which could be formed =
		mass of 1 mole of $CoCl_2$.6H ₂ O = 238 g
		maximum yield of $CoCl_2.6H_2O = \dots$ g
		percentage yield =% [4]

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	Neon 10 Afr	18	8 7	Krypton 36	131 Xe Xenon	Rn Radon		175 Lu Lutetium 71	ئ	Lawrendum 103
Group			19 Fluorine 9 35.5 C.1	17	≋ ऴ	۵	127 	At Astatine 85		173 Yb Ytterbium 70	N _o	Nobelium 102
	I>		Oxygen 32 0 0		Se 3	Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Md	Mendelevium 101
	>		Nitrogen 7 31 31 Phosphares	. 15	75 As	Arsenic 33	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm	Fermium 100
	2		Carbon 6 Carbon 8 28	14	_د ۾	Ε	Sn	207 Pb Lead		165 Ho Holmium 67		Einsteinium 99
	=		B Boron 5 A1 Altradisium	13	ု မီ	Gallium 31	115 n Indium	204 T 1 Thallium		162 Dy Dysprosium 66		Californium 98
					65 Zn	Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65		Berkelium 97
					² 2	Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm	Curium 96
					69 Z	Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am	Americium 95
					ී රි	Cobalt 27	103 Rh Rhodium	192		Sm Samarium 62		Plutonium 94
		T Hydrogen			₂₈	Iron 26	101 Rut Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	ď	Neptunium 93
					N N	Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60		Uranium 92
					ن د	Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Ра	Protactinium 91
					5 >	Vanadium 23	Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th	Thorium 90
					84 1	Titanium 22	2r Zirconium 40	178 # Hafnium 72			nic mass bol	nic) number
					Sc 5	Scandium 21	89 ×	139 La Lanthanum *	Actinium temperature that Actinium temperature the Actinium temperature that Actinium temperature that Actinium temperature that Actinium temperature that Actinium temperature the Actinium temperature that Actinium temperature that Actinium temperature the Actinium temperature that Actinium temperature the A	l series eries	a = relative atomic massX = atomic symbol	b = proton (atomic) number
	=		Be Beryllium 4 24 Mg	12	⁶ S	Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	<i>a</i> × <i>a</i> ×	٩
	_		Lithium 3 23 Na Sordium	11	≋ ⊻	Potassium 19	Rb Rubidium	133 Cs Caesium 55	Francium 87	*58-71 L; 190-103 /	Key	۵

been sought and cleared where possible. Every

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.