

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER		CANDIDATE NUMBER			
CHEMISTRY			0620/33		
Paper 3 (Extended)		Oct	October/November 2012		
			1 hour 15 minutes		
Candidates answ	wer on the Question Paper.				

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 14 printed pages and 2 blank pages.

BLANK PAGE

For Examiner's Use

1	For each of the following,	select	an	element	from	Period	4,	potassium	to	krypton,	which
	matches the description.										

(a)	A metal that reacts rapidly with cold water to form a compound of the type $\mathrm{M}(\mathrm{OH})_2$ and hydrogen.
	[1]
(b)	Its only oxidation state is 0
(c)	It has a macromolecular oxide, XO_{2} , which has similar physical properties to those of diamond.
	[1]
(d)	This is one of the metals alloyed with iron in stainless steel
(e)	It can be reduced to an ion of the type X ⁻
(f)	It can form a covalent hydride having the formula H ₂ X
(g)	Its soluble salts are blue and its oxide is black [1]
(h)	It is a liquid at room temperature. [1]
	[Total: 8]
(a)	State a use for each of the following gases.
	(i) chlorine
	(ii) argon[1]
	(iii) ethene[1]
	(iv) oxygen[1]
(b)	Describe how oxygen is obtained from air.
	[2]
	[Total: 6]

2

3 (a) A small amount of liquid bromine is added to a container which is then sealed.

For Examiner's Use

$$Br_2(I) \rightarrow Br_2(g)$$

Use the ideas of the Kinetic Theory to explain why, after about an hour, the bromine molecules have spread uniformly to occupy the whole container.

(b) The diagrams below show simple experiments on the speed of diffusion of gases.

Complete the following explanations. Diagram 1 has been done for you.

For Examiner's Use

Diagram 1

There is air inside and outside the porous pot so the rate of diffusion of air into the pot is the same as the rate of diffusion of air out of the pot. The pressure inside and outside the pot is the same so the coloured liquid is at the same level on each side of the tube.

iagram 2	
	[3]
iagram 3	
	[3]
	[Total: 9]

For

Examiner's Use

	bys have been used for over 2500 years.
(a) (i)	Explain the phrase zinc alloy.
(ii)	Making alloys is still a major use of zinc. State one other large scale use of zinc.
(iii)	Describe the bonding in a typical metal, such as zinc, and then explain why it malleable. You may use a diagram to illustrate your answer.
(iv)	Suggest why the introduction of a different atom into the structure makes the alless malleable than the pure metal.
(1) 7:	
ZnS	c metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blends. Zinc blends contains silver and lead compounds as well as zinc sulfide. c blende is converted into impure zinc oxide by heating it in air.
	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$
(i)	Describe how zinc oxide is reduced to zinc.
(ii)	Some of the zinc oxide is dissolved in sulfuric acid to make aqueous zinc sulfa Write a balanced symbol equation for this reaction.

For Examiner's Use

(iii)	This impure solution of zinc sulfate contains zinc ions, silver(I) ions and lead ions. Explain why the addition of zinc powder produces pure zinc sulfate solution. Include at least one ionic equation in your explanation.
	[4]
(iv)	Describe how zinc metal can be obtained from zinc sulfate solution by electrolysis. A labelled diagram is acceptable. Include all the products of this electrolysis. The electrolysis is similar to that of copper(II) sulfate solution with inert electrodes.

[4]

[Total: 18]

5 Propenoic acid is an unsaturated carboxylic acid. The structural formula of propenoic acid is given below.

For Examiner's Use

(a)	(i)	Describe how you could show that propenoic acid is an unsaturated compound.
		test
		result
		[2]
	(ii)	Without using an indicator, describe how you could show that a compound is an acid.
		test
		result
		[2]
(b)		penoic acid reacts with ethanol to form an ester. Deduce the name of this ester. Draw structural formula.
	nan	ne of ester
	stru	ctural formula showing all bonds
		[3]
(c)		organic compound has a molecular formula $\rm C_6H_8O_4$. It is an unsaturated carboxylic d. One mole of the compound reacts with two moles of sodium hydroxide.
	(i)	Explain the phrase <i>molecular formula</i> .
		[2]

For Examiner's Use

(ii)	One mole of this carboxylic acid reacts with two moles of sodium hydroxide. How many moles of –COOH groups are there in one mole of this compound?	
(iii)	What is the formula of another functional group in this compound?	[1]
		[1]
(iv)	Deduce a structural formula of this compound.	

[1]

[Total: 12]

6 Until recently, arsenic poisoning, either deliberate or accidental, has been a frequent cause of death. The symptoms of arsenic poisoning are identical with those of a common illness, cholera. A reliable test was needed to prove the presence of arsenic in a body.

For Examiner's Use

(a) In 1840, Marsh devised a reliable test for arsenic.

Hydrogen is formed in this reaction. Any arsenic compound reacts with this hydrogen to form arsine which is arsenic hydride, AsH₃.

The mixture of hydrogen and arsine is burnt at the jet and arsenic forms as a black stain on the glass.

(i)	Write an equation for the reaction which forms hydrogen.	
		[2]

(ii) Draw a diagram which shows the arrangement of the outer (valency) electrons in one molecule of the covalent compound arsine.

The electron distribution of arsenic is 2 + 8 + 18 + 5.

Use x to represent an electron from an arsenic atom. Use o to represent an electron from a hydrogen atom.

[2]

(b)	And	ther hydride c	of arsenic has	the composition b	pelow.		For Examiner's Use
		arsenic	97.4%	hydrogen	2.6%		
	(i)	Calculate the Show your we	•	mula of this hydric	e from the above data.		
						[2]	
	(ii)	The mass of	one mole of t	his hydride is 154	g. What is its molecular for	mula?	
						[1]	
	(iii)	Deduce the s	tructural form	nula of this hydride			
						[1]	
(c)	a m	•	of a person's	exposure to arsen	n the body. Analysis of the hic. To release the absorbed	•	
	(i)	What is the n	ame of the lir	nkage in proteins?			
						[1]	
	(ii)	Name a reag	ent which car	n be used to hydro	lyse proteins.		
						[1]	
	(iii)	What type of	compound is	formed by the hyd	drolysis of proteins?		
						[1]	

For

Examiner's

Use

(d) In the 19th Century, a bright green pigment, copper(II) arsenate(V) was used to kill rats

and insects. In damp conditions, micro-organisms can act on this compound to produce

the	very poisonous gas, arsine.
(i)	Suggest a reason why it is necessary to include the oxidation states in the name of the compound.
	[1]
(ii)	The formula for the arsenate(V) ion is AsO_4^{3-} . Complete the ionic equation for the formation of $copper(II)$ arsenate(V).
	Cu ²⁺ +AsO ₄ ³⁻ \rightarrow
	[2]
	[Total: 14]

Ammonia is made by the Haber process. 7

ror
Examiner's
Use

N (a)	+	3H (a)	\Longrightarrow	2NH ₃ (g)	١
$IN_2(Q)$	+	$\mathfrak{I}_{2}(\mathfrak{G})$	$\overline{}$	$\angle IN\Pi_3(g)$	ļ

	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	
(a)	State one major use of ammonia.	
		[1]
(b)	Describe how hydrogen is obtained for the Haber process.	
		[3]
(c)	This reaction is carried out at a high pressure, 200 atmospheres. State, with an explanation for each, two advantages of using a high pressure.	
		[5]
(d)	(i) What is the difference between an endothermic and an exothermic reaction?	

(ii) Bond breaking is an endothermic process. Bond energy is the amount of energy needed to break or form one mole of the bond. Complete the table and explain why the forward reaction is exothermic.

For Examiner's Use

bond	bond energy kJ/mol	energy change kJ	exothermic or endothermic			
N≡N	944	+944	endothermic			
Н—Н	436	3 × 436 = +1308				
N—H	388					

 [3]

[Total: 13]

BLANK PAGE

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 Afr	18	8 7	Krypton 36	131 Xenon	54	Radon 86		175 Lu Lutetium 71	-	Lr Lawrendum 103
			19 Fluorine 9 35.5 C.1	17	® ऴ	0	127 	53 53	At Astatine 85		173 Yb Ytterbium 70	1	Nobelium 102
	I>		16 O Oxygen 8 32 Oxygen Suffur	16	Se Se	Selenium 34	128 Te	52	Po Polonium 84		169 Tm Thulium 69		Mendelevium 101
	>		Nitrogen 7 31 97 Phosphorus	15	75 As	Arsenic 33	122 Sb	51	209 Bi Bismuth 83		167 Er Erbium 68	Ĺ	Fm Fermium 100
	2		Carbon 6 Carbon 8 Silicon Silicon	14	₂ کو	Ε	Sn =		207 Pb Lead 82		165 Ho Holmium 67		ES Einsteinium 99
	=		B Boron 5 A1 Aluminium	13	ନ୍ଦ ଓ	Gallium 31	115 n	49	204 T 1 Thallium 81		162 Dy Dysprosium 66	č	Californium 98
					65 Zn	Zinc 30	112 Cadmium	48	201 Hg Mercury 80		159 Tb Terbium 65	ā	BK Berkelium 97
					² Ω	Copper 29	Ag Silver	47	197 Au Gold		157 Gd Gadolinium 64	ć	Curium 96
Group					69 Z	Nickel 28	106 Pd	46	195 Pt Platinum 78		152 Eu Europium 63		Am Americium 95
Gr					ී රි	Cobalt 27	103 Rhodium	45	192 F		150 Sm Samarium 62	ć	Plutonium 94
		T Hydrogen			₂₈	Iron 26	101 Ru Ruthenium	44	190 Os Osmium 76		Pm Promethium 61	1	Neptunium 93
					SS Mn	Manganese 25	Tc Technetium	43	186 Re Rhenium 75		Neodymium 60		Uranium 92
					²⁵	Chromium 24	96 Mo lybdenum	42	184 W Tungsten 74		141 Pr Praseodymium 59	ć	Fa Protactinium 91
					5 >	Vanadium 23	93 Nideilan	41	181 Ta Tantalum		140 Ce Cerium 58	232	Thorium 90
					84 1	Titanium 22	91 Zr	40	178 Hf Hafnium 72			nic mass	bol nic) number
					Sc Sc	Scandium 21	88 >	39	139 La Lanthanum 57 *	227 Actinium temperature tempe	l series eries	a = relative atomic mass	X = atomic symbolb = proton (atomic) number
	=		Beryllium 4 24 Mg Magnesium	12	o G	Calcium 20	Sirontium	38	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series		ق × ×
	_		Lithium 3 23 23 Sodium	7	® ⊻	Potassium	Rubidium	37	133 Caesium 55	Fr Francium 87	*58-71 L; 190-103 <i>i</i>	;	ه ک

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.