

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY

0620/32

Paper 3 Theory (Core)

May/June 2016

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials:

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

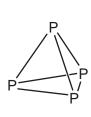
You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

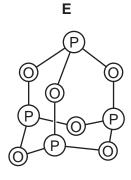
The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of **19** printed pages and **1** blank page.


1 The structures of some substances containing phosphorus are shown.

P H H

Α


B

(PH₄+ | I | PH₄+ | I |
(I | PH₄+ | I | PH₄+ | I |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ | PH₄+ |
(PH₄+ | PH₄+ | PH₄+ | PH₄

C

D
(Na+) (Na+) (Na+) (Na+) (Na+)
(P3-) (P3-) (P3-)
(Na+) (Na+) (Na+) (Na+)

- (a) Answer the following questions about these substances.
 - (i) Which two of these substances are ionic?

224	Γ·	4 1
 anu	 - 1	11

(ii) Which **one** of these substances is an element?

Explain your answer.

(iii) Determine the simplest formula for substance D.

(b)	Phosp	phorus has one naturally occurring isotope.	
	(i)	Determine the number of neutrons present in one atom of the isotope $^{31}_{15}$ P.	
			[1]
	(ii)	How many electrons are there in the outer shell of one phosphorus atom?	
			[1]
	(iii)	Determine the total number of electrons present in a phosphorus molecule, P ₄ .	
			[1]
(c)	What	type of oxide is phosphorus(V) oxide?	
	Explai	n your answer.	
			[2]
		[Tot	al: 9]

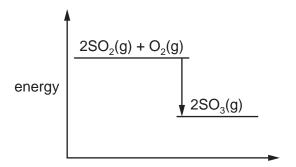
2 (a) The table describes the ease of reduction of some metal oxides with carbon.

metal oxide	ease of reduction on heating	
lead oxide	moderate heating at 200 °C needed	
nickel oxide	high temperature at 750 °C needed	
titanium oxide	very high temperatures above 1700 °C needed	
zinc oxide	very high temperature at 900 °C needed	

Put the metals in order of their reactivity. Put the least reactive metal first.

	I	east reactive most reactive	
			[2]
(b)	Alumi	nium is extracted by the electrolysis of molten aluminium oxide.	
	Predic	ct the products of this electrolysis at the	
	positiv	ve electrode (anode),	
	negat	ive electrode (cathode)	[2]
(c)	When	n iron reacts with dilute hydrochloric acid, an aqueous solution containing iron(II) ioned.	ıs is
	Descr	ribe a test for iron(II) ions.	
	test		
	result		[2]
(d)	Iron r	usts very easily.	
	(i)	Complete the following sentence.	
		Iron rusts in the presence of and	[2]

(ii)	Describe one method of rust prevention and explain how it works.
	[2]
	[Total: 10]

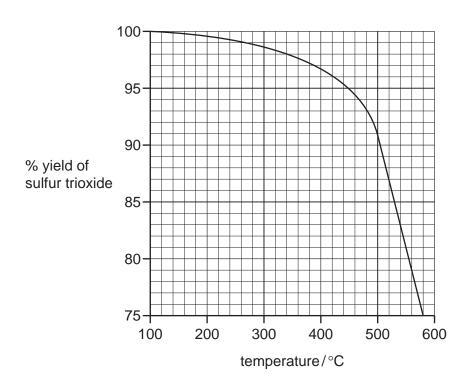

3 Sulfur dioxide reacts with excess oxygen to form sulfur trioxide.

$$2SO_2(g)$$
 + $O_2(g)$ \rightleftharpoons $2SO_3(g)$

(a) What is the meaning of the symbol \rightleftharpoons ?

r ₄

(b) The energy level diagram for the reaction is shown.



Is this reaction exothermic or endothermic?

Give a reason for your answer.

[4]
 11

(c) The graph shows how the percentage yield of sulfur trioxide changes with temperature when the pressure is kept constant.

	(1)	Describe how the percentage yield of sulfur trioxide changes with temperature.	
			[1]
	(ii)	Determine the percentage yield of sulfur trioxide when the temperature is 500 °C.	[1]
d)	Descr	ibe a test for sulfur dioxide.	
	test		
	result		[2]
e)	Give o	one use of sulfur dioxide.	
			[1]

(f) Sulfur dioxide reacts with magnesium.

2Mg +
$$SO_2 \rightarrow 2MgO + S$$

Which substance is reduced in this reaction?

Explain your answer.

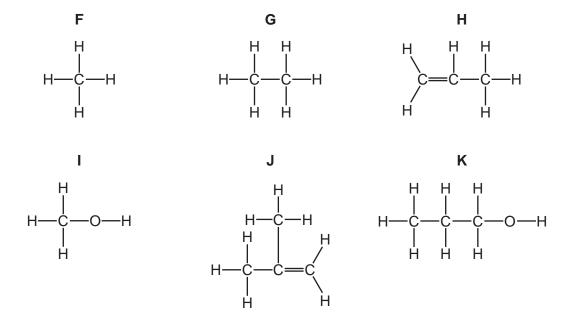
.....[2]

(g) Sulfur dioxide reacts with water to form sulfurous acid, H₂SO₃. Sulfurous acid reacts with hydrogen sulfide to form water and sulfur.

Complete the chemical equation for this reaction.

$$H_2SO_3 + 2H_2S \rightarrowH_2O + 3S$$

[1]


[Total: 10]

1	Alkanas alkanas and	alcohole are three	different hemologous	c cariac of argan	ic compounds
4	Alkanes, alkenes and	alconois are unite	unierent nomologous	s senes oi organ	ic compounds

(a) What is meant by the term homologous series?

r

(b) The structures of some alkanes, alkenes and alcohols are shown below.

(1)	which two or these compounds, F , G , n , i , J and k , are saturated hydrocarbons?	
	Explain your answer.	
		[3]
(ii)	Which one of these compounds is the main constituent of natural gas?	

......[1]

(iv) Why are two compounds, I and K, not hydrocarbons?

(c) The table gives some information about four alcohols.

alcohol	molecular formula	density in g/cm ³	boiling point /°C
methanol	CH₄O	0.793	
	C ₂ H ₆ O	0.789	79
propanol	C ₃ H ₈ O	0.804	98
butanol	C ₄ H ₁₀ O	0.810	117

(i)	Give the name of the alcohol with the formula C ₂ H ₆ O.	
		[1]
(ii)	A student predicts that the density of the alcohols increases as the number of carbatoms increases. Does the data in the table support this prediction?	on
	Explain your answer.	
		[1]
(iii)	Suggest a value for the boiling point of methanol.	
		[1]

(d)	The alcohol with the formula C ₂ H ₆ O burns in a limited supply of air to form carbon monoxide
	and water.

(i) Complete the chemical equation for this reaction.

$$\mathrm{C_2H_6O} \ + \ 2\mathrm{O_2} \rightarrow \\mathrm{CO} \ + \\mathrm{H_2O}$$

[2]

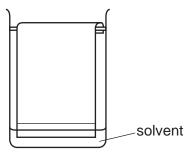
(ii) State an adverse effect of carbon monoxide on health.

[1]	

[Total: 15]

	5	Chlorine,	bromine	and iodine	are hal	ogens
--	---	-----------	---------	------------	---------	-------

(a)	The m	elting point of bromine is -7 °C. The boiling point of bromine is +59 °C.	
	Deduc	ce the state of bromine at +6 °C. Explain your answer.	
			[2
(b)	(i)	Complete the word equation for the reaction of chlorine with potassium iodide. chlorine + potassium iodide \rightarrow +	[2
	(ii)	Suggest why iodine does not react with aqueous potassium bromide.	


(c) The structure of the dye Lithol fast yellow is shown.

Complete the table and calculate the relative molecular mass of Lithol fast yellow.

type of atom	number of atoms	atomic mass					
carbon	13	12	13 × 12 = 156				
hydrogen	10	1	10 × 1 = 10				
nitrogen	4	14	4 × 14 = 56				
oxygen							
chlorine							

relative molecular mass =[2]

- (d) Chromatography is used to separate a mixture of dyes.
 - (i) Draw a cross on the diagram to show where the mixture of dyes is placed at the start of the chromatography.

(ii) Suggest a suitable solvent that could be used.

[1]

(iii) Describe what you would observe as the experiment proceeds.

[1]

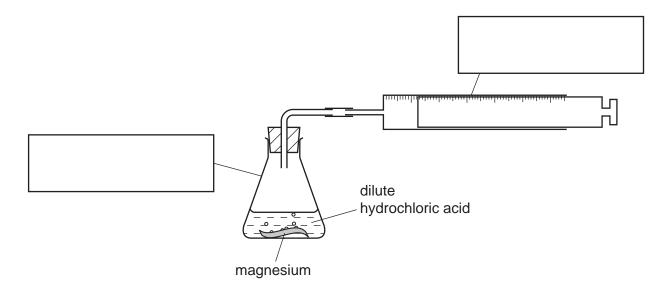
[1]

[1]

Soc	lium is	a metal in Grou	up I of the Periodic Table			
(a)	Desc	ribe some phys	ical and chemical proper	ties of sodium. In you	ur answer include	
	• a	ny observation	s about the reactions of	sodium,		
	• a	t least one wor	d equation.			
						[5]
(b)	The p	resence of sod	ium in compounds can b	e confirmed using a	flame test.	
	Desc	ribe how a flam	e test is carried out and	give the result of the	test for sodium.	
	test.					i
	resul	t				[2]
(c)	Aque	ous sodium hyd	Iroxide is strongly alkalin	e.		
	(i)	Which one of	the following values is th	ne pH of a strongly al	kaline solution?	
		Put a ring aro	und the correct answer.			
		pH 1	pH 2	pH 7	pH 13	
						[1]
	(ii)	Describe how	you could use litmus to s	show that aqueous so	odium hydroxide is alk	aline.
						,
						[2]

6

(d) Sodium sulfite, Na_2SO_3 , reacts with hydrochloric acid.

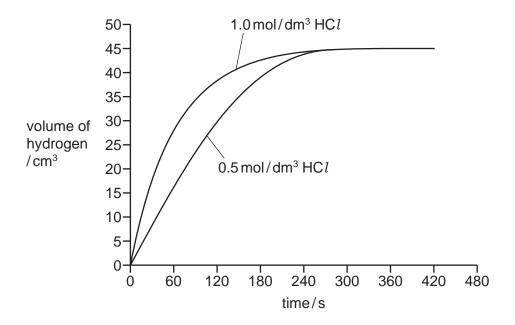

$Na_2SO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + SO_2(g) + H_2O(l)$
Explain why this reaction could have an adverse effect on health if not carried out in a fume cupboard.
[2]

[Total: 12]

7 When magnesium reacts with hydrochloric acid, the products are aqueous magnesium chloride and hydrogen.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

A student used the apparatus shown to follow the progress of this reaction.



(a) Complete the diagram by putting the correct labels in the boxes.

[2]

(b) The student conducted two experiments using the same mass of magnesium in each experiment and two different concentrations of hydrochloric acid. The hydrochloric acid was in excess. All other conditions were kept constant.

The student measured the volume of hydrogen produced over a period of time. The graph shows the results.

	(i)	Which concentration of hydrochloric acid gave the faster initial rate of reaction?
		Use the graph to explain your answer.
		[1
	(ii)	Draw a curve on the graph on page 16 to show how the volume of hydrogen would change if a third experiment was carried out using 1.5 mol/dm³ hydrochloric acid and the same mass of magnesium.
(c)	Give (one use of hydrogen. [1
(d)	Explo air.	sions have occasionally been reported where tiny particles of metal dust escape into the
	Expla	in why metal dust can form an explosive mixture with air.
		[1
		[Total: 7

8	Solo	der is an alloy of lead and tin.	
	(a)	What is the meaning of the term alloy?	
			[1]
	(b)	State the name of another alloy.	
			[1]
	(c)	A student heated a piece of solder carefully. The diagram shows what happens to the solder.	
		solder	
		iron plate	
		at the start after 2 minutes	
		Use the kinetic particle theory to describe and explain what happens to the solder as it chan state.	ges
			[4]
			[4]
	(d)	When heated above 1744 °C, lead forms a vapour.	
		Describe a general property of a vapour (gas) which is not shown by a solid.	
			[1]

[Total: 7]

BLANK PAGE

The Periodic Table of Elements

	IIIA	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon			
	II/				6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	_	iodine 127	82	Αt	astatine -			
	IN				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъо	polonium –	116		livermorium
	^				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
	Λ				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	В	lead 207	114	Εl	flerovium –
	≡				5	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	L	indium 115	81	<i>1</i> L	thallium 204			
											30	Zu	zinc 65	48	В	cadmium 112	80	ΡĜ	mercury 201	112	ပ်	copernicium
											29	C	copper 64	47	Ag	silver 108	79	Αn	gold 197	111		5
Group											28	z	nickel 59	46	Pd	palladium 106	78	₽	platinum 195	110	Ds	darmstadtium –
Gro											27	ဝိ	cobalt 59	45	R	rhodium 103	77	<u>-</u>	iridium 192	109	Ψŧ	meitnerium -
		- :	I	hydrogen 1							26	Ъе	iron	4	Ru	ruthenium 101	9/	Os	osmium 190	108	¥	hassium
											25	Mn	manganese	43	ည	technetium -	75	Re	rhenium 186	107	뮵	bohrium –
						pol	ass				24	ပ်	chromium 52	42	Мо	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Ср	dubnium –
						ato	rek				22	j=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
					_						21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_				ဗ	<u></u>	lithium 7	1	Na	sodium 23	19	¥	potassium	37	Rb	rubidium 85	55	S	caesium 133	87	ъ̈́	francium —

Lu Lu	lutetium 175	103	۲	awrencium	ı
Vp 4	ytterbium 173	102	2	nobelium	1
₆₉ L	thulium 169	101	Md	mendelevium	ı
88 Г	erbium 167	100	Fm	fermium	I
67 H0	holmium 165	66	Es	einsteinium	ı
® Dy	dysprosium 163	98	ర	californium	ı
es Tb	terbium 159	26	Ř	berkelium	ı
[₽] D	gadolinium 157	96	Cm	curium	ı
es En	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	ı
Pm	promethium —	93	ď	neptunium	ı
° P	neodymium 144	92	\supset	uranium	238
P.	praseodymium 141	91	Ра	protactinium	231
Çe S	cerium 140	06	H	thorium	232
57 La	lanthanum 139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mbox{dm}^3$ at room temperature and pressure (r.t.p.)

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.