UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | Paper 3 (Extend | ded) | 1 | May/June 2013 hour 15 minutes | |-------------------|------|---------------------|-------------------------------| | CHEMISTRY | | | 0620/31 | | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CANDIDATE
NAME | | | | Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 12. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. For Examiner's Use | 1 | 1 Petroleum contains hydrocarbons which are separated by fractional distillation. | | | | | |---|---|------|---|--|--| | | (a) | (i) | Complete the following definition of a hydrocarbon. | | | | | | | A hydrocarbon is a compound which | | | | | | | [2] | | | | | | (ii) | Explain what is meant by the term <i>fractional distillation</i> . | | | | | | (, | [2] | | | | | (b) | Sor | ne of the fractions obtained from petroleum are given below. | | | | | () | | te a use for each fraction. | | | | | | bitu | men | | | | | | lubr | icating fraction | | | | | | para | affin fraction | | | | | | gas | oline fraction[4] | | | | | | | [Total: 8] | | | | | | | | | | | 2 | An | elem | ent, M , has the electron distribution 2 + 8 + 18 + 3. | | | | | (a) | Wh | ich group in the Periodic Table is element M likely to be in? | | | | | | | [1] | | | | | | | | | | | | (b) | | dict whether element M is a poor or a good conductor of electricity. e a reason for your answer. | | | | | | | [1] | | | | | | | | | | | | (c) | | ary compounds contain two atoms per molecule, for example HC1. | | | | | | Ider | ntify an element which could form a binary compound with element M . | | | | | | | [1] | | | | | (d) | Pre | dict the formula of the sulfate of M . The formula of the sulfate ion is SO_4^{2-} . | | | | | (~) | | [1] | | | | | | | [1] | | | © UCLES 2013 0620/31/M/J/13 3 | | The hydroxide of M is a white powder which is insoluble in water. Describe how you could show that this hydroxide is amphoteric. | | | | | | | | |----------------------|---|--|---|---------------------|--|--|--|--| | , | [2] | | | | | | | | | | [Total: 6] | | | | | | | | | | . , | | | | | | 1.0 m
was
expe | nol/dm³, at 2
repeated us
riments. | 25°C. The time taker | as added to 5.0 cm ³ of hydrochloric
n for the reaction to stop was measu
nt solutions of acids. The acid was ir | red. The experiment | | | | | | ex | kperiment | temperature/°C | acid solution | time/min | | | | | | | <u>.</u>
1 | 25 | hydrochloric acid 1.0 mol/dm ³ | 3 | | | | | | | 2 | 25 | hydrochloric acid 0.5 mol/dm³ | 7 | | | | | | | 3 | 25 | ethanoic acid 1.0 mol/dm ³ | 10 | | | | | | | 4 | 15 | hydrochloric acid 1.0 mol/dm ³ | 8 | | | | | | (a) | (i) Explain shape. | | nat the pieces of marble are the same | | | | | | | (| (ii) How would you know when the reaction had stopped? [1] | | | | | | | | | (b) | The equation | n for the reaction in (| experiment 1 is: | | | | | | | | Ca | $aCO_3(s) + 2HCl(aq)$ | \rightarrow CaC l_2 (aq) + CO $_2$ (g) + H $_2$ O(I |) | | | | | | (| Complete th | e following ionic equ | ation. | | | | | | | | C | CaCO ₃ (s) + 2H ⁺ (aq) | → + + | | | | | | | | | 3 | | [1] | | | | | | (c) | (i) | Explain why the reaction in experiment 1 is faster than the reaction in experiment 2. | |-----|-------|--| | | | | | | | [1] | | | (ii) | The acids used for experiment 1 and experiment 3 have the same concentration. Explain why experiment 3 is slower than experiment 1. | | | | | | | | | | | | [2] | | (| (iii) | Explain in terms of collisions between reacting particles why experiment 4 is slower than experiment 1. | | | | | | | | | | | | [3] | | | | [Total: 10] | | | | | | The | stru | ctural formula of cyclohexane is drawn below. | | | | CH ₂ | | | | H ₂ C CH ₂ | | | | H_2C CH_2 | | | | CH ₂ | | (a) | The | name gives information about the structure of the compound. | | | | because there are six carbon atoms and cyclo because they are joined in a ring. at information about the structure of this compound is given by the ending ane ? | | | | | | | | [2] | | (b) | Wh | at are the molecular and empirical formulae of cyclohexane? | | | mol | ecular formula | | | emp | pirical formula[2] | | | | | 4 | (c) Draw the structural formula of cyclobutane. | | For
Examiner's
Use | |---|----------|--------------------------| | | | | | | | | | | [1] | | | (d) (i) Deduce the molecular formula of hexene. | [4] | | | (ii) Explain why cyclohexane and the alkene, hexene, are isomers. | | | | | | | | | [2] | | | (e) Describe a test which would distinguish between cyclohexane and the unsat hydrocarbon hexene. | urated | | | test | | | | result of test with cyclohexane | | | | | | | | result of test with hexene | | | | | [3] | | | [Tot | tal: 11] | | | | | | | | | | 5 The reactivity series shows the metals in order of reactivity. For Examiner's Use (a) The reactivity series can be established using displacement reactions. A piece of zinc is added to aqueous lead nitrate. The zinc becomes coated with a black deposit of lead. $$Zn + Pb^{2+} \rightarrow Zn^{2+} + Pb$$ Zinc is more reactive than lead. The reactivity series can be written as a list of ionic equations. \rightarrow + most reactive metal: the best reductant (reducing agent) Zn \rightarrow Zn²⁺ + 2e⁻ Fe \rightarrow Fe²⁺ + 2e⁻ $Pb \rightarrow Pb^{2+} + 2e^{-}$ $Cu \rightarrow Cu^{2+} + 2e^{-}$ $Ag \rightarrow Ag^+ + e^-$ - (i) In the space at the top of the list, write an ionic equation for a metal which is more reactive than zinc. [1] - (ii) Write an ionic equation for the reaction between aqueous silver(I) nitrate and zinc.[2] (iii) Explain why the positive ions are likely to be oxidants (oxidising agents).[1] (iv) Deduce which ion is the best oxidant (oxidising agent).[1] (v) Which ion(s) in the list can oxidise lead metal?[1] **(b)** A reactivity series can also be established by measuring the voltage of simple cells. The diagram shows a simple cell. For Examiner's Use Results from cells using the metals tin, cadmium, zinc and copper are given in the table below. | cell | electrode 1 electrode 2 negative electrode | | voltage/volts | |------|--|---------|---------------| | 1 | copper | cadmium | 0.74 | | 2 | copper | tin | 0.48 | | 3 | copper | zinc | 1.10 | | | ite the four metals in order of increasing reactivity and explain how you used the data he table to determine this order. | |-----------------|--| | | | | | [3] | | | [Total: 9] | | Ammor
weak b | ia is a compound which only contains the elements nitrogen and hydrogen. It is a ase. | | (a) (i) | Define the term base. | | | [1] | | (ii) | Given aqueous solutions of ammonia and sodium hydroxide, both having a concentration of 0.1mol/dm^3 , how could you show that ammonia is the weaker base? | | | | | | | | | [2] | **(b)** Ammonia is manufactured by the Haber Process. The economics of this process require that as much ammonia as possible is made as quickly as possible. Explain how this can be done using the following information. For Examiner's Use The conditions for the following reversible reaction are: - 450°C - 200 atmospheres pressure - iron catalyst | $N_2(g)$ | + 3H | ₂ (g) ← | ≥ 2NH ₃ | (g) | the rea | ction is | exothe | ermic | | | |----------|------|-------------------------------|--------------------|-----|---------|----------|--------|-------|------|-----| |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | [5] | (c) Another compound which contains only nitrogen and hydrogen is hydrazine, N₂H₄. Complete the equation for the preparation of hydrazine from ammonia. $$NH_3 + NaClO \rightarrow N_2H_4 + + H_2O$$ [2] (d) The structural formula of hydrazine is given below. Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound hydrazine. Use x to represent an electron from a nitrogen atom. Use o to represent an electron from a hydrogen atom. Examiner's | (e) | Hydrazine is a weak base and it removes dissolved oxygen from water. It is added water in steel boilers to prevent rusting. | | | | | | |-----|---|---|--|--|--|--| | | (i) | One way it reduces the rate of rusting is by changing the pH of water. What effect would hydrazine have on the pH of water? | | | | | | | | [1] | | | | | | | (ii) | Give a reason, other than pH, why hydrazine reduces the rate of rusting. | | | | | | | | [1] | | | | | | | | [Total: 15] | | | | | - 7 The hydroxides of the Group I metals are soluble in water. Most other metal hydroxides are insoluble in water. - (a) (i) Crystals of lithium chloride can be prepared from lithium hydroxide by titration. 25.0 cm³ of aqueous lithium hydroxide is pipetted into the conical flask. A few drops of an indicator are added. Dilute hydrochloric acid is added slowly to the alkali until the indicator just changes colour. The volume of acid needed to neutralise the lithium hydroxide is noted. | A neutral solution of lithium chloride, which still contains the indicator, is left. Descr
how you could obtain a neutral solution of lithium chloride which does not contain
indicator. | | |---|--| | indicator. | | | | | | | | | | (ii) | You cannot prepare a neutral solution of magnesium chloride by the same method. Describe how you could prepare a neutral solution of magnesium chloride. | |-----|-------|---| | | | | | | | | | | | [3] | | (b) | to n | e concentration of the hydrochloric acid was 2.20 mol/dm³. The volume of acid needed neutralise the 25.0 cm³ of lithium hydroxide was 20.0 cm³. Calculate the concentration ne aqueous lithium hydroxide. | | | | $LiOH + HCl \rightarrow LiCl + H_2O$ | | | | | | | | | | | | [2] | | (c) | Wh | ium chloride forms three hydrates. They are LiC_1L_2O , $LiC_1L_2H_2O$ and $LiC_1L_3H_2O$. ich one of these three hydrates contains 45.9% of water? by how you arrived at your answer. | | | | | | | | ro. | | | | [3] [Total: 10] | | | | [10tal. 10] | | The | ere a | re three types of giant structure - ionic, metallic and giant covalent. | | (a) | In a | in ionic compound, the ions are held in a lattice by strong forces. | | | (i) | Explain the term <i>lattice</i> . | | | | | | | | [2] | | | (ii) | Explain how the ions are held together by strong forces. | | | | | | | | [1] | © UCLES 2013 0620/31/M/J/13 8 | (b) | Describe the bonding in a typical metal. | | | | | | |-----|--|-------------------|---|---------------------------|-----------------|--| [3] | | | (c) | The e | | s of the three types of gi | ant structure are given i | n the following | | | | | type of structure | conductivity of solid | conductivity of liquid | | | | | | ionic | poor | good | | | | | | metallic | good | good | | | | | | giant covalent | poor | poor | | | | | | | lectrical conductivity bet
between the solid and lic | [5] | | | | | | | | [Total: 11] | | © UCLES 2013 0620/31/M/J/13 DATA SHEET The Periodic Table of the Elements | Group | 0 | 4 He Helium | 20 Neon 10 Neon 40 | Ar
Argon | 8 7 | Krypton
36 | 131 Xe xenon | Radon 86 | | 175
Lu
Lutetium
71 | Lr
Lawrendum
103 | |-------|---|---------------------------|--------------------------|-----------------------|--|-----------------|------------------------------|----------------------------------|---------------------------------|---|---| | | \ | | Fluorine 9 35.5 | Chlorine | ≋ ऴ | | 127
 | At Astatine 85 | | 173
Yb
Ytterbium
70 | Nobelium | | | I | | 16
Oxygen
8 | Sulfur
16 | စု အ | 3 45 | | Polonium 84 | | 169
Tm
Thulium | Md
Mendelevium | | | > | | 14 Nitrogen 7 | Phosphorus | As | Arsenic
33 | Sb
Antimony | 209 Bi smuth 83 | | 167
Er
Erbium
68 | Fm
Fermium | | | > | | Carbon 6 | _ | ç
Ge | E | 119
Sn | 207 Pb Lead 82 | | 165
Ho
Holmium
67 | ES r | | | Ш | | 11
Boron
5 | A1
Aluminium
13 | ု မ | Gallium
31 | 115
 n
 ndium | 204 T (Thallium | | 162
Dy
Dysprosium
66 | Cf
Californium
98 | | | | | | | S Z | Zinc
30 | Cadmium | 201
Hg
Mercury | | 159
Tb
Terbium
65 | BK Berkelium | | | | | | | ⁶ 2 | Copper
29 | 108
Ag
Silver | 197
Au
Gold | | 157 Gd Gadolinium 64 | Carrium
Curium | | | | | | | 69 \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{ | Nickel
28 | 106 Pd Palladium | 195 Pt Platinum 78 | | 152
Eu
Europium
63 | Am Americium | | | | | | | ී දි | Cobalt
27 | 103
Rh odium | 192 Lidium T7 | | Sm
Samarium
62 | Pu Plutonium | | | | 1
H
Hydrogen | | | ₂₈ | Iron
26 | Ruthenium | 190
Os
Osmium
76 | | Pm
Promethium
61 | Neptunium | | | | | | | SS
Mn | Manganese
25 | Tc
Technetium | | | 144
Neodymium
60 | 238
U
Uranium | | | | | | | ²⁵ | Chromium
24 | 96
Mo | 184 W Tungsten 74 | | Pr
Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | 5 > | Vanadium
23 | 93
Nb | 181 Ta Tantalum 73 | | 140 Ce Cerium | 232
Th
Thorium | | | | | | | 84 F | Titanium
22 | 91 Zr | | | 1 | nic mass
bol
nic) number | | | | | | | Sc 45 | Scandium
21 | 89 × | 139 La Lanthanum 57 * | 227
Ac
Actinium 89 | Series | a = relative atomic massX = atomic symbolb = proton (atomic) number | | | = | | Beryllium 4 24 | Mg
Magnesium
12 | ^გ წ | Calcium
20 | 88
Sr
Strontium | 137
Ba
Barium
56 | 226 Ra Radium | *58-71 Lanthanoid series
190-103 Actinoid series | в Х | | | _ | | 7 Li Lithium 3 23 | Sodium 11 | ® × | Potassium
19 | Rubidium | 133 Cae sium 55 | Francium
87 | *58-71 L | Key | The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.