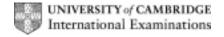
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31


Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0620	31

1	(a) (i)	basic set up – container and chromatography paper	[1]
		sample clearly above level of solvent (original mark must be shown and not just the line)	[1]
		indication that more than one "spot" either on diagram or as comment	[1]
		Allow MAX [2] for round filter paper with green spot at centre two or more rings	
	(ii)	run chromatogram of pure chlorophyll can be implied same position of green spot or same Rf NOT just a green spot	[1] [1]
	pho car	alyst otosynthesis or chloroplasts otochemical reaction or needs light bon dioxide + water form cose or starch or oxygen NOT sugar	
	Än	THREE correct points ignore incorrect answers	[3]
			[Total: 8]
2	molten	potassium iodide NOT aqueous	[1]
	hydroge oxygen	en	[1] [1]
	water u	sed up or solution becomes more concentrated or sodium chloride remains change	[1]
		cts are given as hydrogen, chlorine and sodium hydroxide then 2/3	[1]
	copper	(and water)	[1] [1]
	sulfuric		[1]
		s or dilute or concentrated potassium bromide correct formulae	[1]
			[Total: 8]
3	(a) (i)	D	[1]
	(ii)	E	[1]
	(iii)	B or F	[1]
	(iv)	В	[1]
	(v)	A	[1]

[1]

[1]

[1]

[Total: 7]

(iv) Ba or La

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2009	0620	31
	(b) (i)	CON C ²⁺ a 7× a NOT Igno	or CaI ₂ ND next two marks conditional on correct formula and F ⁻ or Ca ²⁺ and I ⁻ and 1o round F/I IE covalent = 0 ore electrons around Ca ept arrow notation arrow from electron on calcium		[1] [1] [1]
	(ii)	cond solu brittl corre hard Any	ect chemical properties	d	[2]
					[Total: 10]
4	(i)	Cu a	and Pd		[2]
	(ii)	Ваа	and La		[2]
	(iii)	+2 o	or 2+ or Ba ²⁺		[1]

(a) (i) Ca²⁺ + 2F⁻ → CaF₂ [2]
 Not balanced ONLY [1]
 Both species must be correct for first mark. Second mark is for correct balancing.

(ii) Mole ratio Ca²⁺: F⁻ is 1:2
Answer must mention moles
accept argument based on charges or <u>number</u> of ions
accept 2 moles of NaF react with 1 mole of CaCl₂
NOT just "2" in equation
If fluorine must specify atoms or ions

(v) it is a transition metal or a d block element

(iii) to remove traces of solutions or to remove soluble impurities or to remove a named salt sodium chloride or sodium fluoride or calcium chloride

To remove impurities is not enough

[1]

(iv) to dry (precipitate) or to remove water or to evaporate water NOT to evaporate some of water NOT to crystallise salt

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0620	31

	(b)	exp	PO ₄) ₂ allow correct example blain why 8 cm³ <u>react fully</u> nment about mole ratio	[1] [1] [1]
				[Total: 8]
6	(a)	(i)	air (liquid) petroleum or crude oil or alkanes or methane or water or steam or steam resuitable aqueous solution e.g. brine or sea water NOTE: cannot crack methane	[1] eforming or [1]
		(ii)	iron	[1]
		(iii)	(as a) fertiliser or to make fertilisers or to make nitric acid	[1]
	(b)	(i)	concentrations/macroscopic properties do not change accept amounts stay the same NOT no change	[1]
			rate of forward and back reactions equal	[1]
		(ii)	it <u>decreases</u> with <u>increase</u> temperature or it <u>increases</u> with <u>decrease</u> temperature	[1]
	(c)	(i)	shows an increase either a line or curve (any decrease = 0)	[1]
		(ii)	increase pressure favours the side with lower volume or molecules or moles that is RHS or products side ignore any mention of rates	[1] [1]
				[Total: 10]
7	(a)	(tot	al endothermic change = 436 + 242 = +)678 kJ al exothermic change = 2 × 431 = –)862 kJ cept correct sign/supplied/absorbed for endo etc.	[1] [1]
			cept correct sign/evolved/produced for exo etc. unge for reaction = -184 kJ	[1]
		ecf	necessary to calculate –184, just show that exo change > than endo allowed provided negative 34 kJ scores all 3 marks	
	(b)	(i)	because it accepts a proton accepts hydrogen ion or H ⁺ ONLY [1] proton and H ⁺ [2]	[2]
		(ii)	hydrogen chloride is a strong acid hydrogen fluoride is a weak acid weaker or stronger correctly applied for [2]	[1] [1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0620	31

(iii) hydrogen chloride (aqueous) would have lower pH
 OR hydrogen fluoride (aqueous) would have higher pH
 If values suggested, not over 7

[1]

[Total: 8]

8 (a) biodegradable or breaks down naturally made from a renewable source **or** does not use up petroleum

reduce visual pollution **or** reduces need for landfill sites **or** less danger to wildlife any **TWO** ignore mention of toxic gases

[2]

(b) (i) ester

accept polyester or fat or lipid or vegetable oil or carboxylic acid

[1]

[1]

 (ii) acid or carboxylic <u>acid</u> or alkanoic <u>acid</u> alcohol or hydroxyl or alkanol NOT formulae NOT hydroxide

[1]

(iii) condensation

COND because water is formed in reaction

or monomer does not have C=C bond

[1] [1]

(c) (i) lactic acid \rightarrow acrylic acid + water

[1]

(ii) add bromine (water) or bromine in an organic solvent remains brown/orange/yellow

[1] [1] [1]

goes colourless **NOT** clear
If mark 1 near miss e.g. bromide allow marks 2 and 3

Colour of reagent must be shown somewhere for [3] otherwise max [2]

OR acidified potassium manganate(VII) purple/pink to colourless

OR alkaline potassium manganate(VII) purple/pink to green **or** purple/pink to brown precipitate

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0620	31

(iii) reagent [1] observable result

suitable named metal (**NOT** sodium, lead, any metal below magnesium etc.) if un-named metal [0] result can score [1] hydrogen evolved or bubbles/effervescence/fizzing

insoluble metal oxide colour change or dissolves

any carbonate or bicarbonate gas/carbon dioxide/bubbles/effervescence/fizzing

sodium hydroxide or alkali temperature increase **or** accept indicator to show neutralisation unspecified base scores [1] only **NOT** alcohol

[Total: 13]

9 (a)
$$72/24 = 3$$
 and $28/14 = 2$ [1] Mg_3N_2 [1] accept just formula for [2] even with incorrect or no working NOT ecf

(b)
$$AI_4C_3 + 12H_2O = 4AI(OH)_3 + 3CH_4$$
 [2] For AI_4C_3 ONLY [1]

- (c) (i) silicon is limiting reagent 0.07 moles of Si and 25/160 = 0.156 moles of Br_2 [1] because 0.14 (2 × 0.07) < 0.156 [1] If 80 used to find moles of Br_2 the mark 1 and 3 still available arguments based on masses can be used
 - (ii) 0.07 NOT ecf

[Total: 8]