June 2004 ## **INTERNATIONAL GCSE** ## MARK SCHEME **MAXIMUM MARK: 80** **SYLLABUS/COMPONENT: 0620/03** CHEMISTRY Extended | Page 1 | Mark Scheme | Syllabus | Paper | |--------|-----------------------|----------|-------| | | Chemistry – June 2004 | 0620 | 3 | - When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable. - When a word equation is required a correct symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable. - An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question. In the mark scheme if a word **or** phrase is underlined it (**or** an equivalent) is required for the award of the mark. (.....) is used to denote material that is not specifically required. **OR** designates alternative and independent ways of gaining the marks for the question. **or** indicates different ways of gaining the same mark. **COND** indicates that the award of this mark is conditional upon a previous mark being gained. - Unusual responses which include correct Chemistry that answers the question should always be rewarded - even if they are not mentioned in the mark scheme. - All the candidate's work must show evidence of being marked by the examiner. | Pag | e 2 | | Mark Scheme | Syllabus | Paper | |-----|-----|-------|---|----------|-------------------| | | | | Chemistry – June 2004 | 0620 | 3 | | | | | | | | | 1. | (a) | (i) | portable | | [1] | | | | (ii) | oxygen or air | | [1] | | | (b) | (i) | both have four outer or valency electrons
need to share four more
or need four more to complete energy level
NOT four bonds | | [1]
[1] | | | | (ii) | hard brittle high melting or boiling point poor conductor of electricity or semi-conductor any TWO NOT insoluble in water, NOT tough NOT appearance | | [2] | | | | (iii) | germanium or carbon
NOT graphite | | [1] | | | (c) | (i) | correctly balanced | | [1] | | | | (ii) | lost oxygen or decrease in oxidation number NOT accepts electrons unless valid explanation | | [1] | | | | (iii) | 4 oxygen atoms around 1 silicon atom 2 silicon atoms around 1 oxygen tetrahedral or diagram that looks tetrahedral If some wrong chemistry, such as ionic MAX 2/3 | TOT. | [1]
[1]
[1] | | | | | | 1014 | L = [12] | | 2. | (a) | (i) | USA or Texas or Poland or Mexico or Japan or
Australia or Sicily
accept other sources of sulphur eg petroleum
or natural gas or metal sulphides or volcanoes
NOT coal, NOT underground | Ethiopia | [1] | | | | (ii) | Preserving food or bleaching or sterilising or disinfecting or making paper or bleaching wood or wine or jam or fumigation or making paper NOT making wood pulp | pulp | [1] | | | | (iii) | burnt/roast in oxygen or air | | [1] | | | | (iv) | vanadium(V) oxide or vanadium oxide or plating ignore oxidation state of vanadium | ım | [1] | | | | (v) | Increase temperature (increases rate) but reduce catalyst only increases rate or a catalyst does not influence position of equilibrium NOT a definition of a catalyst | | [1]
[1] | | | | (vi) | sulphur trioxide + sulphuric acid = oleum correct symbol equation acceptable | | [1] | | | | (vii) | $H_2S_2O_7 + H_2O = 2H_2SO_4$ | | [1] | | Pag | 10.3 | | Mark Scheme | Syllabus | Paper | |-----|------|--------|--|------------------|------------| | гау | je J | | Chemistry – June 2004 | 0620 | 3 | | | (b) | (i) | potassium | | [1] | | | | (ii) | ammonium sulphate | | [1] | | | | (iii) | $Ca_3(PO_4)_2$ | | [1] | | | | | Ca(H ₂ PO ₄) ₂ | | [1] | | | | (iv) | only acceptable responses are: accepts a proton | | [2] | | | | | accepts H ⁺ [1] only | TOTA | L = [14] | | 3. | (a) | dissol | ved or solution in water | | [1] | | | () | NOT a | aqueous NOT soluble in water | | | | | | Hiquid | d <u>and</u> g gas | | [1] | | | (b) | | etrons in bond between two nitrogen atoms etrons on each nitrogen | | [1]
[1] | | | | | e any coding of electrons with dots or crosses | | 1.3 | | | (c) | (i) | decreases or reaction stops or rate becomes zo | ero | [1] | | | | (ii) | concentration or number of effective collisions | s | [1] | | | | | decreases used up or less chemical or less collisions etc [| [1] only | [1] | | | | (iii) | greater initial slope | | [1] | | | | () | same final point | | [1] | | | | | as long as new curve touches the original curve the top allocate the mark | : rieai | | | | | (iv) | greater surface area | | [1] | | | | | | TOTA | AL = [10] | | 4 | (a) | (i) | Named soluble zinc salt | | [1] | | | | | corresponding sodium salt If hydroxide or oxide then 0/2 | | [1] | | | | (::\ | • | | 101 | | | | (ii) | Correct equation not balanced [1] only | | [2] | | | | (iii) | Correct equation | | [2] | | | (b) | (i) | $Fe^{3+} + 3OH^{-} = Fe(OH)_{3}$ | | [1] | | | | (ii) | Max at 8cm ³
Same shape of graph | | [1] | e above shape, the height of the precipitate and thum hydroxide are irrelevant | ne volume | [1] | | | | | | | | | Dog 4 | | | Mault Calagna | Cullabura | D | |--------|-------------|--------|---|------------------|----------------| | Page 4 | | | Mark Scheme Chemistry – June 2004 | Syllabus
0620 | Paper
3 | | | | | One many – June 2004 | 0020 | <u> </u> | | | | (iii) | Maximum then height of precipitate decreases or graph slopes down to x axis or comes to zero |) | [1] | | | | | hydroxide dissolves in excess or it is amphoteric | ; | [1] | | | | | | TOT | AL = [11] | | | | | | 1017 | ~ = [[] | | 5. | (a) | Has to | be three different uses. | | | | | | jewell | se that depends on malleability or ductility-
ery, pipes, wires, sheets, roofing, ornaments
that it is malleable or ductile | | [1] | | | | | cal wires or cooking utensils or electrodes
) conductor | | [1] | | | | makin | g alloys or named alloy | | [1] | | | (b) | (i) | $Cu^{2+} + 2e = Cu$ | | [1] | | | | (ii) | gas is oxygen | | [1] | | | | | (copper(II) sulphate) changes to <u>sulphuric acid</u> or copper ions removed from solution | | [1] | | | (c) | (i) | copper atoms - electrons = copper ions accept correct symbol equation | | [1] | | | | (ii) | concentration of copper ions does not change amount or number of copper ions does not change | or
ge | [1] | | | | | copper ions are removed and then replaced or copper is transferred from anode to cathode | | [1] | | | | (iii) | refining copper or plating (core) or extraction of boulder copper | | [1] | | | | | | TOT | AL = [10] | | 6. | (a) | (i) | correct repeat unit | | [1] | | | | | COND evidence of polymer chain | | [1] | | | | (ii) | glucose or maltose | | [1] | | | | (iii) | addition (polymerisation) or no other product except polymer | | [1] | | | | | condensation (polymerisation) or polymer and water | | [1] | | | (b) | (i) | sodium hydroxide COND ammonia or alkaline gas or litmus red to If aluminium added wc =0 | blue | [1]
[1] | | Dogo 5 | | | Mark Scheme | Cyllobus | Danar | |--------|----------|--|---|------------------|------------| | Page 5 | | | Chemistry – June 2004 | Syllabus
0620 | Paper
3 | | | - | (ii) | measure pH | | [1] | | | | | more than 1 and less than 7 or correct colour eg orange or yellow NOT red NOT green OR add magnesium or calcium carbonate weak acid reacts slowly | | [1]
[1] | | | (c) | (i) | ethyl acrylate
ester or alkene | | [1]
[1] | | | | (ii) | brown to colourless (NOT clear) correct formula for acid NOT ester | | [1]
[1] | | | | | | TOTA | L = [13] | | 7 | (a) | Avogadro's Number of particles or formula mass in grams or 6 x 10 ²³ particles accept atoms, ions and molecules or as many particles as there are carbon atoms in 12.00g of ¹² Ca ANY one | | | [1] | | | (b) | (i) | moles of Mg = $3/24 = 0.125$
moles of CH ₃ COOH = $12/60 = 0.200$
magnesium is in excess | | | | | | | OR 3.0g of magnesium react with 15g of acid only 12.0 g of acid present magnesium is in excess | | [3] | | | | (ii) | Mark conseq to (i) but NOT to any simple interpolate $H_2 = 0.1$ | eger | [1] | | | | (iii) | Mark conseq to (ii) but NOT to any simple into Volume of hydrogen = 0.1×24 = 2.4 dm^3 | teger | [2] | | | (c) | (i) | moles of NaOH = 25/1000 x 0.4 = 0.01 | | [1] | | | | (ii) | Mark conseq to (i) but NOT to any simple intended of acid = 0.01/2 = 0.005 | eger | [1] | | | | (iii) | Mark conseq to (ii) max 10M
concentration of acid = 0.005 x 1000/20
= 0.25 mol/dm ³ | | [1]
[1] | TOTAL = [10] TOTAL for PAPER = [11] + [14] + [10] + [11] + [10] + [13] + [11] = [80]