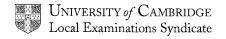


June 2003

INTERNATIONAL GCSE


MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY

(Extended Paper 3)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.

or indicates different ways of gaining the same mark.

COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- All the candidate's work must show evidence of being marked by the examiner.

1	(a)		A correct equation either CO If not balanced but otherwise	•	[2]
	(b)	(i) (ii)	$C + O_2 \rightarrow CO_2$ NOT w (higher in furnace) no oxyger carbon dioxide reacts with ca	•	[1] [1] [1]
			OR incomplete combustion of	f carbon	[2]
			OR either equation gains bot $CO_2 + C = 2CO$ or $2C + O_2 =$		
			OR carbon dioxide reacts with carbon		[1] [1]
	(c)		limestone + sand → slag OR calcium carbonate + silic	on (IV) oxide $ o$ calcium silicate (+ carbon dioxide)	[2]
			For knowing that impurity is s	and [1] ONLY	
			Accept calcium oxide and sili Accept lime	con oxide	
	(d)	(i)		watches or utensils or surgical instruments or	[4]
		(ii)		denum or niobium or titanium	[1] [1]
		(iii)	blow air/oxygen through carbon becomes carbon diox	ido	
			carbon dioxide escapes as g		
			silicon and phosphorus beco		
			calcium oxide or calcium carl	oonate	
			forms slag Any FOUR	NOT blast furnace	[4]
			Ally I OOK	NOT blast furnace	ניין
	(e)		anode tin	NOT impure time	[1]
			cathode iron or steel tin salt or tin ions as electroly	rte	[1] [1]
		NOT oxide or hydroxide or carbonate			

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

2	(a)	(i) (ii)	3 ignore any charges high melting or boiling point hard	[1]
			poor conductor of electricity or heat brittle	
			Any TWO	[2]
		(iii)	NOT insoluble, dull, or malleable carbon, graphite diamond silicon, germanium	[1]
			silicon (IV) oxide or silica or silicon dioxide or or sand or silicon carbide or named polymer	silicon oxide [1]
		(iv)	four around one cond looks tetrahedral or shows continuation	[1] [1]
			For graphite layers [1] weak bonds between la	
			Accept any macromolecule, no link with (iii) For polymer repeat unit [1] continuation [1]	
	(b)	(i)	white precipitate	[1]
			COND upon a precipitate dissolves in excess or forms solution	[1]
		(ii)	<u>blue precipitate</u>	[1]
			COND upon a precipitate does not dissolve in excess	[1]
	(c)	(i)	number of moles $CO_2 = 0.24/24 = 0.01$	
			conseq number of moles of CaCO ₃ and MgCO conseq number of moles of CaCO ₃ = 0.005	$D_3 = 0.01$ [3]
		(ii)	Calculate the volume of hydrochloric acid, 1.0	
			one tablet. number of moles of CaCO₃ and MgCO₃ in one	tablet = 0.01
			Expect same as answer to (c)(i). NO marks to consequentially to this response	be awarded. Just mark
			conseq number of moles of HCl needed	F43
			to react with one tablet = 0.02	[1]
			conseq volume of hydrochloric acid, 1.0 mole, tablet = 0.02 dm ³ or 20 cm ³	/dm³, needed to react with one [1]
				TOTAL = 16
3	(a)	(i)	Correct equation	[2]
			For giving correct formula of alkane and alkene Accept alkene and hydrogen	e [1] only
		(ii)	chlorine COND light or 200°C or heat or lead tetraethy	[1]
			or high temperature MAX 1000°C	[1]
			ignore comment 'catalyst'	
	(b)	(i)	same molecular formula different structures or structural formulae	[1] [1]
		(ii)	but- <u>2</u> -ene or cyclobutane	[1]
			corresponding structural formula NOT 2-butene	[1]
	(c)		butanol ignore numbers	[1]
			butane ignore numbers dibromobutane ignore numbers	[1] [1]
			ignore named	1,1

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

	(d)	(i)	propene	[1]
			CH ₃ —CH==CH ₂	[1]
		(ii)	Correct structure of repeat unit ignore point of attachment of ester group COND upon repeat unit	[1]
		(iii)	shows continuation If chain through ester group [0] out of [2] do not decay or non-biodegradable shortage of sites or amount of waste per year visual pollution forms methane	[1]
		(iv)	Any TWO form poisonous or toxic gases or named gas CO, HC <i>l</i> HCN NOT carbon dioxide, harmful, sulphur dioxide	[2] [1]
				TOTAL = 18
4	(a)	(i)	Correct equation not balanced [1] ONLY $2Pb(NO_3)_2 = 2PbO + 4NO_2 + O_2$	[2]
			$Pb(NO_3)_2 = PO + 2 NO_2 + \frac{1}{2} O_2$	
		(ii)	potassium nitrate → potassium nitrite + oxygen	[1]
	(b)	(i)	close or tightly packed ordered or lattice vibrational NOT forces	[1] [1] [1]
		(ii)	melting or freezing or fusion or solidification	[1]
	(c)	(i)	oxygen and nitrogen (in air) react at high temperatures (and high pressure) If nitrogen in fuel [0] out of [2]	[1] [1]
		(ii)	catalytic converter react with carbon monoxide or hydrocarbons form nitrogen	
			ANY TWO	[2]
	(d)		Add excess lead oxide to nitric acid can imply excess	[1]
			filter NOT if residue is lead nitrate evaporate or heat solution	[1] [1]
				TOTAL = 14
5	(a)		protons 2 electrons 2	
			neutrons 4	[3]
	(b)	(i)	La ³⁺ + 3e- = La	[1]
		(ii)	hydrogen bromine NOT Bromide caesium hydroxide	[1] [1] [1]
			ignore any comments about electrodes	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

(c)	metal hydroxide or hydroxide ions hydrogen	[1] [1]
(d)	correct formula 1Ba to 2C1 charges correct 8e around the anion All three points Two points ONLY [1] If covalent [0] out [2]	[2]
(e)	alternating (positive and negative) pattern	[1] [1]
(f) (i) (ii)	barium - oxygen or ionic bond forming energy released/exothermic bond breaking energy taken in/endothermic more energy released	[1] [1] [1] [1]

TOTAL = 17

Total for Paper: 80