F321: Atoms, Bonds and Groups Structure & Bonding | 1. | This question is about different models of bonding and molecular shapes. | | | | | | |----|--|---|-------|--|--|--| | | Magı | Magnesium sulfide shows ionic bonding. | | | | | | | (i) | What is meant by the term ionic bonding? | | | | | | | | | | | | | | | | | [1] | | | | | | | | | | | | | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in magnesium sulfide. Show outer electron shells only. | [2] | | | | | | | [Total 3 ma | arks] | | | | | | | | | | | | | 2. | 'Dot- | and-cross' diagrams can be used to predict the shape of covalent molecules. | | | | | | | Fluorine has a covalent oxide called difluorine oxide, F ₂ O. The oxygen atom is covalently bonded to each fluorine atom. | | | | | | | | (i) | Draw a 'dot-and-cross' diagram of a molecule of F ₂ O. Show outer electron shells only. | | | | | | (ii) | Predict the bond angle in an F ₂ O molecule. Explain your answer. | | |------|--|-----------------------| [3]
[Total 5 marks | | | | [Total o marks | | Liqu | uid ammonia, NH_3 , and water, H_2O , both show hydrogen bonding. | | | (i) | Draw a labelled diagram to show hydrogen bonding between two molecule liquid ammonia . | s of | | | | | | | | | | | | | | | | [3] | | | | [O] | | (ii) | Water has several anomalous properties as a result of its hydrogen bondin | g. | | | Describe and explain one anomalous property of water which results from hydrogen bonding. | [2] | 3. Plymstock School 2 [Total 5 marks] 4. The third period of the Periodic Table features the elements magnesium and chlorine. The table below shows the melting points of these elements. | element | melting point
/ °C | |-----------|-----------------------| | magnesium | 650 | | chlorine | -101 | Describe the structure and bonding shown by these elements. Use your answer to explain the difference in melting points. | In your answer, you should use appropriate technical terms spelt correctly. | | |---|-----------------| [Total 6 marks] | **5.** One form of naturally occurring carbon is graphite. The table below lists some properties of graphite. | electrical conductivity | good conductor | | |-------------------------|----------------|--| | hardness | soft | | | melting point | very high | | - Describe the bonding and structure in graphite. - Explain, in terms of bonding and structure, the properties of graphite shown above. | 7 | In your answer, you should use appropriate technical terms, spelt correctly. | |---|--| [Total 5 marks] | Amn | nonia, NH ₃ , is a covalent compound. | | |-------|--|-----| | (i) | Explain what is meant by a covalent bond. | | | | | | | | | [1] | | /::\ | Draw a 'det and areas' diagram to show the handing in NU la | | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in NH3. | | | | Show outer electrons only. | [1] | | | | [1] | | (iii) | Name the shape of the ammonia molecule. | [1] | | (iii) | Name the shape of the ammonia molecule. Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. shape: | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. shape: | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. shape: | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. shape: | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. shape: | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. shape: | [1] | | (iii) | Explain, using your 'dot-and-cross' diagram, why ammonia has this shape and has a bond angle of 107°. shape: | [1] | Chemists have developed models for bonding and structure which are used to explain 6. **7.** Ammonia reacts with hydrogen chloride, HC*l*, to form ammonium chloride, NH₄C*l*. | NH ₄ C | Cl is an ionic cor | mpound | containing N | lH₄ ⁺ | and C <i>l</i> | ions. | |-------------------|--------------------|--------|--------------|------------------|----------------|-------| | <i>(</i> :) | O - 4 - 4 | . | | | h - 0 = : | | | (i) | Complete the electron configuration of the $C\varGamma$ ion. | | |-------|--|-----| | | 1s ² | [1] | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in NH ₄ ⁺ . | | | | Show outer electrons only. | [1] | | | | | | (iii) | State the shape of, and bond angle in, an NH ₄ ⁺ ion. | | | | shape: | | bond angle: [2] | (IV) | A student investigated the conductivity of ammonium chloride. | |------------|--| | | She noticed that when the ammonium chloride was solid it did not conduct electricity. However, when ammonium chloride was dissolved in water, the resulting solution did conduct electricity. | | | Explain these observations. | [2]
[Total 6 marks] | | | | | | | | This oxide | question compares the bonding, structure and properties of sodium and sodium e. | | Sodi | um, Na, is a metallic element. | | Expl | ain, with the aid of a labelled diagram, what is meant by the term metallic bonding. | [Total 3 marks] | 8. | (ii) State what is meant by the term <i>ionic bond</i> . (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 mix of and liquid states.] | (iii) State what is meant by the term <i>ionic bond</i> . (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 ma. | Sodi | um reacts with oxygen to form sodium oxide, Na ₂ O, which is an ionic compound | d. | |--|--|-------|---|----------| | (iii) State what is meant by the term <i>ionic bond</i> . (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 m. | (iii) State what is meant by the term <i>ionic bond</i> . (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 m. | (i) | Write the equation for the reaction of sodium with oxygen to form sodium oxide | Э. | | (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 material compare and explain the electrical conductivities of sodium and sodium oxide in the | (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 mathres] | | | | | (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 material compare and explain the electrical conductivities of sodium and sodium oxide in the | (iii) Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. Show outer electrons only. [Total 4 mathres] | (ii) | State what is meant by the term <i>ionic bond</i> . | | | Show outer electrons only. [Total 4 material compare and explain the electrical conductivities of sodium and sodium oxide in the | Show outer electrons only. [Total 4 material compare and explain the electrical conductivities of sodium and sodium oxide in the | () | | | | Show outer electrons only. [Total 4 material compare and explain the electrical conductivities of sodium and sodium oxide in the | Show outer electrons only. [Total 4 material compare and explain the electrical conductivities of sodium and sodium oxide in the | | | | | [Total 4 ma | [Total 4 ma
Compare and explain the electrical conductivities of sodium and sodium oxide in the | (iii) | Draw a 'dot-and-cross' diagram to show the bonding in Na ₂ O. | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | Show outer electrons only. | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | | | | Compare and explain the electrical conductivities of sodium and sodium oxide in the | Compare and explain the electrical conductivities of sodium and sodium oxide in the | | ITo | tal 4 m | | | | | | | | solid and liquid states. | solid and liquid states. | | | : | | | | SOIIG | and liquid states. | **11.** The figure below shows the boiling points of four hydrides of Group 6 elements. (i) Explain, with the aid of a diagram, the intermolecular forces in H_2O that lead to the relatively high boiling point of H_2O . |
 |
 | | |------|------|--| | | | | | | | | |
 |
 | | | | | | | | | | |
 |
 | | | | | | | | | | |
 |
 | | [3] (ii) Suggest why H_2S has a much lower boiling point than H_2O . |
 |
 | | |------|------|--| | | | | | | | | |
 |
 | | | | | | | | | | [1] [Total 4 marks] | 12. | 12. Chemists have developed models for bonding and structure. These models are us
explain different properties of metals and non-metals. | | | |-----|---|---|--------------| | | (i) | Draw a labelled diagram to show the currently accepted model for <i>metallic</i> bonding. | | | | | | [2] | | | (ii) | What feature of this model allows metals to conduct electricity? | | | | | | | | | | [Total 3 ma | [1]
arks] | | 13. | | metal magnesium reacts with the non-metal chlorine to form a compound nesium chloride, $MgCl_2$, which has ionic bonding. | | | | (i) | State what is meant by an ionic bond. | | | | | | | | | | | [1] | | | (ii) | 'Dot-and-cross' diagrams are used to model which electrons are present in the ion. | | | | | Draw a 'dot-and-cross' diagram, including outer electron shells only, to show the ions present in magnesium chloride, ${\rm MgC}\it{l}_{2}$. | | | | | | | | | | | | | | | | | | | (iii) | A student finds that solid magnesium chloride and pure water do not conduct electricity. The student dissolved the magnesium chloride in the water and the resulting solution does conduct electricity. | |-----|-------|--| | | | Explain these observations. | [3] | | | | [Total 6 marks] | | | | | | | | | | 14. | | non-metals chlorine and carbon have very different boiling points. Chlorine is a gas
om temperature but carbon does not boil until well over 4500 °C. | | | Expla | ain this difference, in terms of bonding and structure. | | | In yo | ur answer, you should use appropriate technical terms, spelled correctly. | TT 1.10 1.1 | | | | [Total 3 marks] | **15.** Water, ammonia and sulfur dioxide are simple molecular compounds. Pairs of electrons in molecules may be present as bonding pairs or as lone pairs. (i) Complete the table below for water, ammonia and sulfur dioxide. | molecule | H ₂ O | NH ₃ | SO ₂ | |---|------------------|-----------------|----------------------| | number of bonding pairs of electrons | | | 4 (two double bonds) | | number of lone pairs of electrons around central atom | | | 1 | [2] (ii) Use your answers to (i) to help you draw the shape of, and bond angle in, a molecule of NH_3 and of SO_2 . | molecule | NH ₃ | SO ₂ | |--|-----------------|-----------------| | shape of
molecule with
bond angles | | | [4] [Total 6 marks] | 16. | Wate | er forms hydrogen bonds which influences its properties. | | |-----|------|---|----------------| | | | lain, with a diagram, what is meant by <i>hydrogen bonding</i> and explain two malous properties of water resulting from hydrogen bonding. | [| Total 6 marks] | | | | | | | | | | | | 17. | The | ions present in Ca(OH) ₂ are Ca ²⁺ and OH ⁻ . | | | | (i) | Complete the electronic configuration of a Ca ²⁺ ion. | | | | | 1s ² | ı | | | | | [1] | | | | | | | | (ii) | How many moles of ions are in one mole of Ca(OH) ₂ ? | | | | | | | | | | moles of ions = | [1] | | | | | | | | (iii) | How many moles of electrons are in one mole of OH ⁻ ions? | | |-----|--------|--|------------| | | | moles of electrons = | [1] | | | (iv) | Draw a 'dot-and-cross' diagram of Ca(OH) ₂ . Show outer electron shells only. | | | | | | | | | | [Total 5 mark | [2]
(s] | | 40 | A IAI- | | | | 18. | | ough compounds are usually classified as having ionic or covalent bonding, often bonding is somewhere in between these two extremes. | | | | State | e what is meant by the terms | | | | (i) | ionic bond, | | | | | | | | | | | [1] | | | (ii) | covalent bond. | | | | | [Total 3 mark | [2] | | | | [10tal 5 mark | ری, | | 19. | | s of electronegativity. | ined in | |-----|------|---|-----------------| | | (i) | Explain the term <i>electronegativity</i> . | | | | | | | | | | | | | | | | [2] | | | | | | | | (ii) | Use a suitable example to show how the presence of a polar bond can be explained in terms of electronegativity. | | | | | You may find it useful to draw a diagram in your answer. | [2] | | | | | [Total 4 marks] | | | | | | | 20. | | ne polar molecules are able to form hydrogen bonds.
v a diagram to show an example of hydrogen bonding. | [Total 2 marks] | | | | | | | | | | | **21.** The diagram below shows the variation in the boiling points of elements across Period 3 of the Periodic Table. - (a) In the table below for the elements Mg, Si and S, - complete the structure column using the word *giant* or *simple*. - complete the bonding column using the word *metallic*, *ionic* or *covalent*. | element | structure | bonding | |---------|-----------|---------| | Mg | | | | Si | | | | S | | | [3] (b) Explain why silicon has a much **higher** boiling point than phosphorus. [2] | | (c) | Explain why the boiling point increases from sodium to aluminium. | | |-----|------|--|----------------------------| | | | | | | | | | | | | | |
[2]
[Total 7 marks] | | 22. | Sodi | ium reacts with chlorine forming the ionic compound sodium chloride, NaC/. | | | | (i) | Write an equation, including state symbols, for this reaction. | | | | | | [2] | | | (ii) | Describe the structure of sodium chloride in the solid state. You may find it to draw a diagram. | useful | | | | | | | | | | | | | | |
[2]
[Total 4 marks] | | | | | | | 23. | Sodi | ium reacts with oxygen to form sodium oxide, Na ₂ O. | | | | Drav | v a 'dot-and-cross' diagram for Na ₂ O. Show outer electrons only. | | | | | | [Total 2 marks] | | _ | - · · · · · · · · · · · · · · · · · · · | | |-------|---|--| | (i) | Construct a balanced equation for the formation of sodium peroxide from sodium. | | | | | [1] | | (ii) | Construct a balanced equation for the reaction of sodium peroxide with water. | | | | | [1] | | (iii) | Draw a 'dot-and-cross' diagram for a molecule of H ₂ O ₂ . Show outer electrons only. | | | | | [2]
marks] | | com | pounds to form the highly explosive compound, nitrogen trichloride, NCl_3 . | | | (i) | Name the shape of an NCl_3 molecule. | | | | | [1] | | | form (i) (ii) (iii) | (ii) Construct a balanced equation for the reaction of sodium peroxide with water. (iii) Draw a 'dot-and-cross' diagram for a molecule of H ₂ O ₂ . Show outer electrons only. [Total 4] In water treatment plants, care must be taken as chlorine can react with nitrogen compounds to form the highly explosive compound, nitrogen trichloride, NC/ ₃ . Molecules of NC/ ₃ have a bond angle of 107°. | **24.** Sodium reacts with excess oxygen to form sodium peroxide, Na_2O_2 . | | (ii) | Explain why a molecule of NCl_3 has this shape and a bond angle of 107°. | | |-----|----------|---|------------------------| [3]
[Total 4 marks] | | | | | [Total 4 marks] | | | | | | | 26. | | huric acid was added to aqueous barium hydroxide until the solution was just ralised, forming the insoluble salt, $BaSO_4$, and water. | st | | | Ba(C | $OH)_2(aq) + H_2SO_4(aq) \rightarrow BaSO_4(s) + 2H_2O(l)$ | | | | The adde | electrical conductivity of the solution steadily decreased as the sulphuric acied. | d was | | | Expl | ain why the electrical conductivity decreased. | | | | | | ···· | | | | | | | | | | | | | | | [Total 2 marks] | | | | | | **27.** In this question, one mark is available for the quality of spelling, punctuation and grammar. Many physical properties can be explained in terms of bonding and structure. The table below shows the structures and some properties of sodium chloride and graphite in the solid state. | substance | sodium chloride | graphite | |----------------------------------|-----------------|-----------| | structure | | | | electrical conductivity of solid | poor | good | | melting and boiling point | high | high | | solubility in water | good | insoluble | Explain these properties in terms of bonding and structure. | | - | |---|---| | _ | ı | | | | | | | Quality of Written Communication [1] [Total 8 marks] | 28. | Magnesium | has a giant | metallic structure | held together b | by metallic bonding | |-----|-----------|-------------|--------------------|-----------------|---------------------| | | | | | | | | (| i) | Draw a | label | led (| diagram | to s | how i | meta | llic | bond | ing | |---|----|--------|-------|-------|---------|------|-------|------|------|------|-----| |---|----|--------|-------|-------|---------|------|-------|------|------|------|-----| | LO1 | |-----| | 121 | | 1-1 | (ii) Use your diagram to explain how magnesium conducts electricity. | *************************************** | |---| [1] [Total 3 marks] 29. Magnesium reacts with oxygen to form magnesium oxide. $$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$ | (1) | Use oxidation numbers to show that oxygen has been reduced in its reaction with | |-----|---| | | magnesium. | |
 |------| [2] (ii) Draw a 'dot-and-cross' diagram to show the arrangement of electrons in magnesium oxide. Show outer electron shells only and include any charges. [2] [Total 4 marks] **30.** This question is about the simple molecular compounds water, ammonia and sulphur dioxide. Pairs of electrons in molecules may be present as bonding pairs or as lone pairs. (i) Complete the table below for water, ammonia and sulphur dioxide. | molecule | H ₂ O | NH ₃ | SO ₂ | |---|------------------|-----------------|-----------------------| | number of bonding pairs of electrons | | | 4
(2 double bonds) | | number of lone pairs of
electrons
around central atom | | | 1 | [2] (ii) Use your answers to (a)(i) to help you draw the shape of a molecule of NH_3 and of SO_2 . Clearly show values of the bond angles in your diagrams. | molecule | NH ₃ | SO ₂ | |--|-----------------|-----------------| | shape of
molecule with
bond angles | | | | | | [4] | |--------|---|--------| | [Total | 6 | marks] | [Total 2 marks] | 31. | The | O–H bonds in water and the N–H bonds in ammonia have dipoles. | |-----|------|---| | | (i) | Why do these bonds have dipoles? | | | | | | | | | | | | [1] | | | (ii) | Molecules of NH_3 are able to form hydrogen bonds. Draw a diagram to show the hydrogen bonding in ammonia. Include any relevant lone pairs and dipoles. | | | | [2] | | | | [Total 3 marks] | | | | | | 32. | Desc | cribe and explain the density of ice compared with water. | | | | | | | | | | | | | | | | | **33.** Antimony is in Group 5 of the Periodic Table. It forms a compound with hydrogen that has the formula SbH_3 . | | | | | [3] | |-----|------|---|--|-----------------| | | | CaO | CO ₂ | (b) | Draw 'dot and cross' diagrams to sh electron shells only. | ow the bonding in CaO and CO ₂ . Show | v outer | | | | | | [1] | | | | | | | | | (a) | State what is meant by ionic bonding | g. | | | | | $CaCO_3(s) \rightarrow Ca$ | | | | • | | ed strongly, forming an ionic compou | nd, CaO and a covalent compound, CC | | | 34. | Lime | estone contains the ionic compound. (| CaCO ₃ . Limestone decomposes when | it is | | | | | | | | | | | | [Total 3 marks] | | | | | | [2] | (ii) | Explain why a molecule of SbH ₃ has | s this bond angle. | | | | | | | [1] | | | | | | | | | (i) | Predict the bond angle in SbH ₃ . | | | | | (c) | Complete the electronic configuration in terms of sub-shells for calcium in CaO. | | |-----|-----|--|------| | | | 1s ² | | | | | | [1] | | | | [Total 5 ma | rks] | | | | | | | | | | | | | | | | | 35. | The | nitrate ion, NO ₃ ⁻ , in Ca(NO ₃) ₂ contains both covalent and dative covalent bonds. | | | | (i) | What is the difference between a covalent bond and a dative covalent bond? | [1] | | | (ii) | Calcium nitrate dec | • | eating to form | calcium oxide, | oxygen and | |-----|------|--|-----------------|--------------------|-----------------|--| | | | Construct a balance | ed equation fo | r this reaction. | | | | | | | | | | [1]
[Total 2 marks | | 36. | gran | is question, one mar
nmar.
y physical properties | | | - | | | | | w show some proper | rties of elemen | ts in Period 2 o | of the Periodic | | | | | element | Li | C
(graphite) | N | | | | ele | ectrical conductivity
of solid | good | good | poor | | | | ı | boiling point / °C | 1342 | 4000 | -196 | | | | Expl | ain these properties | in terms of bor | nding and struc | | [11]
y of Written Communication [1]
[Total 12 marks] | | 37. | | burning of fossil fuel
and-cross' diagram o | | | | | | 38. | Drav | v a ' <i>dot-and-cross</i> ' di | iagram for CaC | $\mathcal{C}l_2$. | | [Total 2 marks | grammar. The halogens chlorine, bromine and iodine each exist as diatomic molecules at room temperature and pressure. The halogens all have van der Waals' forces. Explain how van der Waals' forces are formed. Explain the trend in volatilities of the halogens chlorine, bromine and iodine. [Total 6 marks] 40. Titanium has metallic bonding. (i) Explain what is meant by *metallic bonding*. Use a diagram in your answer. [2] How does metallic bonding allow titanium to conduct electricity? (ii) [1] [Total 3 marks] 41. At room temperature, X is a liquid which does not conduct electricity. What does this information suggest about the bonding and structure in X? In this question, one mark is available for the quality of spelling, punctuation and 39. Plymstock School 26 [Total 2 marks] | 42. | very | lodine is extracted commercially from seawater with chlorine gas. Seawater contains very small quantities of dissolved iodide ions, which are oxidised to iodine by the chlorine gas. | | | | |-----|------|---|-------------|--|--| | | (i) | Write an ionic equation for the reaction that has taken place. | | | | | | | | [2] | | | | | (ii) | Use your understanding of electronic structure to explain why chlorine is a stronger oxidising agent than iodine. | [Total 4 ma | [2]
arks | | | | | | | | | | | | | | | | | | 43. | | is question, one mark is available for the quality of use and organisation of ntific terms. | | | | | | | gen and oxygen are elements in Period 2 of the Periodic Table. The hydrogen pounds of oxygen and nitrogen, $\rm H_2O$ and $\rm NH_3$, both form hydrogen bonds. | | | | | | (i) | Draw a diagram containing two H ₂ O molecules to show what is meant by <i>hydrogen bonding</i> . On your diagram, show any lone pairs present and relevant dipoles. | | | | | | | | [3] | | | | | | | | | | | | (ii) | State and explain two anomalous properties of water resulting from hydrogen bonding. | |-----|------|---| [4]
Total 7 marks | | | | | | | | | | 44. | The | 'dot-and-cross' diagram of an ammonia molecule is shown below. | | | | H N SH | | | D | | | | Pred | lict, with reasons, the bond angle in an ammonia molecule. | [Total 4 marks | | 45. | Water and carbon dioxide both consist of cova | alent molecules. | | |-----|--|-----------------------------------|------| | | State what is meant by a <i>covalent</i> bond. | | | | | | | | | | | [Total 2 mar | ·ks] | | | | | | | 46. | Draw 'dot-and-cross' diagrams for a molecule dioxide. Show outer electron shells only. | of water and a molecule of carbon | | | | | | | | | | | | | | | | | | | water | carbon dioxide | | [Total 3 marks] | (i) | Draw the shapes of these molecules and | state the bond angles. | |------|--|----------------------------------| | | water | carbon dioxide | | | | | | | bond angle in water = | bond angle in carbon dioxide = | | | | | | | | | | (ii) | Explain why a water molecule has a diffe molecule. | rent shape from a carbon dioxide | | (ii) | | rent shape from a carbon dioxide | | (ii) | | rent shape from a carbon dioxide | | (ii) | | rent shape from a carbon dioxide | | (ii) | | | | | inderstanding of electronegativity helps to e | | [2] | | (ii) | Water and carbon dioxide both have polar bonds. Explain why water has po molecules but carbon dioxide has non-polar molecules. | lar | |-----|------|--|-----------------------| | | | | | | | | | | | | | | [2]
Total 4 marks] | | 19. | | gnesium, fluorine and magnesium fluoride have different types of bonding and erent properties. | | | | Mag | gnesium has metallic bonding. | | | | (i) | Draw a diagram to show what is meant by metallic bonding. | | | | | Label the diagram. | [2] | | | (ii) | Why is magnesium a good conductor of electricity? | | | | | | | | | | [| [1]
Total 3 marks] | | 50. | Fluo | orine, F ₂ , has covalent bonding. | | | | (i) | State what is meant by a <i>covalent</i> bond. | | | | | | | | | | | [2] | | | (11) | outer electron shells only. | | |-----|-------|---|----------------| | | | [Total : | [1]
3 marks | | 51. | Mag | nesium fluoride, MgF ₂ , has ionic bonding. | | | | (i) | How does <i>ionic bonding</i> hold particles in MgF ₂ together? | | | | | | | | | | | [2] | | | | | <u>ι</u> ≏. | | | (ii) | Draw a 'dot-and-cross' diagram for magnesium fluoride, MgF ₂ . Show outer electron shells only. | | | | | | [2] | | | (iii) | Magnesium fluoride is produced when magnesium reacts with fluorine. | | | | | Complete the half-equations below to show the formation of the ions in magnesium fluoride in this reaction. | | | | | Mg → + | | | | | F ₂ + → | | | | | | [2] | | | | | | | | (iv) | A student found that magnesium fluoride has different electrical conductivities when solid and when dissolved in water. | |-------------|---------------|---| | | | Explain these two observations. | [2]
[Total 8 marks] | | | | | | | | | | 52 . | In th | is question, one mark is available for the quality of written communication. | | | Des | cribe the intermolecular bonding in CH ₄ and in H ₂ O. | | | Use | clear diagrams in your answer. | | | | [Total 6 marks] | | | | | | 53. | Stat
force | e and explain two anomalous properties of H_2O that depend on its intermolecular es. | | | | [4] | | | | Quality of Written Communication [1]
[Total 5 marks] | | | | | | | | |