

Question	Answer		Guidance
(a) (i	 i) (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) √√ 	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid
	Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only		IGNORE : $Fe^{2+}(g) + 2I^{-}(g) \longrightarrow Fel_{2}(s)$ (Part of cycle)
	DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓
	DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance		ALLOW 1 mark for $\Delta H_{\rm f}$ definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

uestion	Answer	Marks	Guidance
(a) (iii)	IF answer = -2473 (kJ mol ⁻¹) award 2 marks (-113) = 416 + (2 × +107) + 759 + 1561 + (2 × -295) + ΔH_{LE} (Fel ₂)		 IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
	OR $\Delta H_{LE}(Fel_2) =$ $-113 - (416 + (2 \times +107) + 759 + 1561 + (2 \times -295))$ OR $-113 - 2360 \checkmark$ $= -2473 \checkmark (kJ mol^{-1})$	2	ALLOW for 1 mark: $+2473$ wrong sign -2661 107 and -295 used instead of 2×107 and 2×-295 -236 $+107$ used instead of 2×107 -276 -295 used instead of 2×-295 -365 wrong sign for 295 -224 wrong sign for 113 -164 wrong sign for 2×107 -95 wrong sign for 750 $+64$ wrong sign for 1561 -365 wrong sign for 2×-295
			CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +461 instead of +416
(b) (i)	Fe ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ ✓ Br [−] : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ ✓	2	ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ ALLOW 1s ² written after answer prompt (<i>ie</i> 1s ² twice) ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ALLOW for Fe ²⁺ 4s ⁰ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
			Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake

uestion	Answer	Marks	Guidance
(b) (i			FULL ANNOTATIONS NEEDED
	With Cl ₂ AND Br ₂ AND I ₂ products are Fe ²⁺ (AND halide ion) FeCl ₂ AND FeBr ₂ AND Fel ₂ ✓		ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants
	OR Evidence that two electrode potentials have been compared for at least ONE reaction, ✓ e.g. Fe –0.44 AND Cl ₂ +1.36 e.g. Iron has more/most negative electrode potential		ALLOW response in terms of positive 'cell reactions', e.g Fe + Cl ₂ \rightarrow Fe ²⁺ + 2Cl ⁻ E = (+)1.80 V IGNORE comments about reducing and oxidising agents and electrons
	With Cl ₂ AND Br ₂ , products are Fe ³⁺ (AND halide ion) FeCl ₃ AND FeBr ₃ ✓	3	
(c)	BR TH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks		ALLOW correct multiples throughout ALLOW equilibrium signs in all equations
	1st mark for ALL CORRECT species e.g.: $Fe^{2+} + NO_3^- + H^+ \rightarrow Fe^{3+} + NO + H_2O$		For 1st mark, IGNORE e [−] present
	2nd mark for CORRECT balanced equation $3Fe^{2+} + NO_3^- + 4H^+ \rightarrow 3Fe^{3+} + NO + 2H_2O \checkmark\checkmark$		
	Reaction 2: 1 mark ${}_{2}O)_{6}]^{2+}$ + NO → [Fe(H ₂ O) ₅ NO] ²⁺ + H ₂ O ✓	3	Check carefully for correct charges
1 1	[Fe(H Total	16	

C	Questi	on	Answer	Marks	Guidance
2	(a)	(i)	$2K^{+}(g) + S^{2-}(g) \checkmark$ $2K^{+}(g) + S^{-}(g) + e^{-}$ $2K(g) + S(g)$ \checkmark	3	Mark each marking point independently Correct species AND state symbols required for each mark For S ^{2–} , DO NOT ALLOW S ⁻² For e [–] , ALLOW e For e [–] only , IGNORE any state symbols added ALLOW k and s <i>It can be very difficult distinguishing K from k; S from s</i>

(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of $a(n \text{ ionic})$ compound from its gaseous ions (under standard conditions) $\checkmark \checkmark$	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid
		Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only		IGNORE : $2K^{+}(g) + S^{2-}(g) \longrightarrow K_2S(s)$ (question asks for words)
		DO NOT ALLOW 2nd mark without 1st mark Note: A definition for enthalpy change of formation will receive no marks		ALLOW 1 mark (special case) for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓

(a) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = –2116 (kJ mol ⁻¹) award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors	
	-381 - (2 × +89 + 279 + 2 × +419 -200 + 640) ✓ -381 - 1735 = - 2116 ✓ (kJ mol ⁻¹)	2	ALLOW for 1 mark ONE mistake with sign OR use of 2: -2027 (2×89 not used for K) -1697 (2×419 not used for K) -2516 (+200 rather than -200 for S 1st electron affinity) (+)2116 (wrong sign) -1354 (+381 instead of -381) (+)1354 (+1735 instead of -1735) -836 (-640 instead of +640) -1558 (-279 instead of +279) -1760 (-2 × 89 instead of +2 × 89) -439 (-2 × 419 instead of +2 × 419) -2120 (rounded to 3SF) For other answers, check for a single transcription error or calculator error which could merit 1 mark DO NOT ALLOW any other answers, e.g. -1608 (2 errors: 2×89 and 2×419 not used for K) -846 (3 errors:)	

(b)	Lowest melting point KI		FULL ANNOTATIONS MUST BE USED
	RbCl		ORA throughout
	Highest melting point NaBr Correct order ✓		Response must clearly refer to ions for explanation marks
	Mark 2nd and 3rd marking points independently		2nd and 3rd marking point must be comparative
	Attraction and ionic size linked: Greater attraction from smaller ions/closer ions/larger charge density ✓ <i>Comparison needed</i>		DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc DO NOT ALLOW responses using nuclear size or attraction DO NOT ALLOW responses linked with loss of electrons
			IGNORE larger electron density ALLOW smaller sum of radii gives a greater ionic attraction IGNORE NaBr has greater ionic attraction IGNORE NaBr has smallest ionic radius (not focussing on size of each ion)
	Energy AND attraction/breaking bonds linked: More energy/heat to overcome attraction (between ions) OR More energy/heat to break (ionic) bonds ✓	3	ASSUME bonds broken are ionic unless otherwise stated DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc Note: Comparison for energy only (<i>i.e. link between more</i> <i>energy and breaking bonds/overcoming attraction</i>)
	Total	10	

C	Quest	ion	Answer	Marks	Guidance
3	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions (under standard conditions) ✓	2	 IGNORE 'energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark
	(b)	(i)	$Ca^{2+}(g) + O^{2-}(g)$ $Ca^{2+}(g) + O(g) + 2e^{-}$ $Step G$	2	Correct species AND state symbols required for both marks 2e ⁻ required for left-hand response ALLOW e for e ⁻ Mark each marking point independently
		(ii)	 (enthalpy change of) formation (of calcium oxide) ✓ (enthalpy change of) atomisation of oxygen ✓ Second electron affinity (of oxygen) ✓ 	3	calcium oxide not required for this mark DO NOT ALLOW 'lattice formation' (<i>confusion with LE</i>) atomisation AND oxygen/O ₂ /½O ₂ /O both required (<i>atomisation of calcium is also in cycle</i>) IGNORE oxygen or oxygen species, e.g. O ⁻ DO NOT ALLOW calcium

Question	Answer	Marks	Guidance
Question (b) (iii)	Answer FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -3454 (kJ mol ⁻¹) award 2 marks 635 = $178 + 249 + 590 + 1145 + (-141) + 798 + \Delta H_{LE}(CaO)$ OR -635 - $[178 + 249 + 590 + 1145 + (-141) + 798]$ OR -635 - $[178 + 249 + 590 + 1145 + (-141) + 798]$ OR -635 - $[178 + 249 + 590 + 1145 + (-141) + 798]$ OR -635 - $2819 \checkmark$ = $-3454 \checkmark$ (kJ mol ⁻¹)	Marks 2	GuidanceIF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errorsIst mark for expression linking ΔH_{LE} (CaO) with ΔH values ALLOW LE for ΔH_{LE} ALLOW for 1 mark: -3736 (+)3454 (+)3454
			Any other number: CHECK for ECF from 1st marking point Award 1 mark for one transcription error only and everything else correct: e.g. +187 instead of +178 IF any value has been omitted, award zero

Question	Answer	Marks	Guidance
(c)	 For first 2 marks, IGNORE nuclear attraction OR proton attraction Property AND effect required IGNORE 'atomic' and 'atoms' and 'molecules' and assume to IGNORE LE increases OR LE decreases IGNORE bond strength; strength of ionic bonds 	hat 'size	' and 'charge' refers to ions
	First 2 marks Decrease in (ionic) size AND more negative LE OR more exothermic OR more attraction ✓	3	ANNOTATE WITH TICKS AND CROSSES, etc ORA throughout
	Increase in (ionic) charge OR charge density AND more negative LE OR more exo thermic OR more attraction ✓		ALLOW pull for attraction IGNORE just 'greater force' (<i>could be repulsion</i>) IGNORE responses in terms of packing IGNORE electron density IGNORE lower/higher LE
	Link between LE and attraction Lattice enthalpy correctly linked to attraction between IONS at least once \checkmark e.g. Greater attraction between ions gives more negative LE		For 3rd marking point ONLY, IONS is essential; DO NOT ALLOW attraction between atoms or molecules DO NOT ALLOW nuclear attraction
	Total	12	

Q	uestio	on	Answer	Marks	Guidance
4	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: Li ⁺ (g) + F ⁻ (g) \longrightarrow LiF(s) Question asks for a definition, not an equation

Question	Answer	Marks	Guidance
(a)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: Li ⁺ (g) + F ⁻ (g) \longrightarrow LiF(s) <i>Question asks for a definition, not an equation</i>

Question	Answer	Marks	Guidance
(b) (i)	 Mark Line 1 first as below (right or wrong) Mark Line 4 as below (right or wrong) Mark difference in species on Line 1 and Line 2 MUST match one of the enthalpy changes in the table: atomisation of Li(s) atomisation of ½F2(g) first ionisation energy of Li(g) Repeat for differences on Line 2 and Line 3 		ANNOTATIONS MUST BE USED ALLOW marks by ECF as follows: Follow order at top of Answer column
	4 $Li^+(g) + F(g) + e^-$ 3 $Li(g) + F(g)$ 2 $Li(g) + \frac{1}{2}F_2(g)$ 1 $Li(g) + \frac{1}{2}F_2(g)$ Correct species and state symbols required for all marks IF an electron has formed, it MUST be shown as e^- OR e	4	ALLOW atomisation of $\frac{1}{2}F_2(g)$ before atomisation of Li(g): 4 $\frac{\text{Li}^+(g) + F(g) + e^-}{4}$ 3 $\frac{\text{Li}(g) + F(g)}{4} + \frac{F(g)}{4}$ 2 $\frac{\text{Li}(g) + F(g)}{4} + \frac{F(g)}{4}$ 4 $\frac{\text{Li}^+(g) + F(g) + e^-}{4}$ 3 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$ 2 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$ 4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$ 2 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$ 4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$ 4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$ 2 $\frac{\text{Li}(g) + \frac{1}{2}F_2(g)}{4}$ 4 $\frac{\text{Li}^+(g) + e^- + \frac{1}{2}F_2(g)}{4}$ 4 $\frac{\text{Li}^+(g) + \frac{1}{2}F_2(g)}{4}$ 4 $\frac{\text{Li}^+(g) + \frac{1}{2}F_2(g)}{4}$ 4 $\frac{1}{2}$ 4 $\frac{1}{$

Question	Answer	Marks	Guidance
(b) (iii) FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -1046 (kJ mol ⁻¹) award 2 marks (-616) = (+159) + (+79) + (+520) + (-328) + ΔH_{LE} (LiF) OR ΔH_{LE} (LiF) = (-616) -[(+159) + (+79) + (+520) + (-328)] \checkmark = -616 - 430 = -1046 (kJ mol ⁻¹) \checkmark	2	IF there is an alternative answer, check the list below for marking of answers from common errors ALLOW for 1 mark: +1046 wrong sign -18 +430 instead of -430 +18 +616 instead of -616 -1006.5 (+79) $\Delta H_{at}(F)$ halved to +39.5 -170 wrong sign for 328 Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +195 instead of +159
(c)	$\Delta H < T\Delta S OR \Delta H - T\Delta S < 0$ OR $\Delta H \text{ is more negative than } T\Delta S$ OR Negative value of ΔH is more significant than negative value of $T\Delta S \checkmark$	1	ANNOTATIONS MUST BE USED ALLOW 'exothermic' for negative ALLOW a negative lattice energy value ALLOW ΔH is negative AND magnitude of ΔH > magnitude of $T\Delta S$ IGNORE ONLY magnitude of ΔH > magnitude of $T\Delta S$

Question	Answer	Marks	Guidance		
(d)	For FIRST TWO marking points, assume that the following refer to 'ions', Mg ²⁺ , etc. DO NOT ALLOW molecules For 'ions', ALLOW 'atoms' ALLOW fatoms' For Mg ²⁺ , Na ⁺ , Cl ⁻ and F ⁻ , ALLOW symbols: Mg, Na, Cl and F ALLOW names: magnesium, sodium, chlorine, chloride, fluorine, fluoride <i>i.e.</i> ALLOW Mg has a smaller (atomic) radius For THIRD marking point, IONS must be used				
	Comparison of size of anions Chloride ion OR Cl⁻ is larger (than F⁻) OR Cl⁻ has smaller charge density (than F⁻) ✓		ANNOTATIONS MUST BE USED ORA F ⁻ is smaller OR F ⁻ has a larger charge density ✓ IGNORE just Cl ⁻ is large comparison required		
	Comparison of size AND charge of cations Mg ²⁺ is smaller (than Na ⁺) AND Mg ²⁺ has a greater charge (than Na ⁺) ✓		ORA: Na ⁺ is larger AND Na ⁺ has a smaller charge ✓ IGNORE just Mg ²⁺ is small comparison required ALLOW 'greater charge density' for 'greater charge' but NOT for smaller size		
	Comparison of attraction between ions F ⁻ has greater attraction for Na ⁺ / + ions AND Mg ²⁺ has greater attraction for F ⁻ / – ions ✓ Quality of Written Communication:	3	 + AND – IONS must be used for this mark IGNORE greater attraction between ions in NaF AND MgF₂ + AND – ions OR oppositely charged ions are required ASSUME attraction to be electrostatic unless stated otherwise: e.g. DO NOT ALLOW nuclear attraction 		
	Third mark needs to link ionic size and ionic charge with the attraction that results in lattice enthalpy		ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction IGNORE just 'greater force' (<i>could be repulsion</i>) IGNORE comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions IGNORE responses in terms of packing		
	Total	12			