1. From the evidence, candidates may have identified compound **F** as propanone, propanal or propanoic acid

If **F** is propanone or propanoic acid, then maximum score = 7; **but** if **F** is propanal then maximum score = 6

The mark scheme for \mathbf{F} = propanone and propanal is shown below.

mass spec of E-Remember to check the spectrum

Quality of Written Communication – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃

OR m/z = 45 indicates presence of CH₃CHOH

OR CH₂CH₂OH OR C₂H₅O ✓

IR of F – Remember to check the spectrum

IR shows no broad absorption between 2500 to 3300 cm^{$^{-1}$} so no O—H bond **OR** no broad absorption between 2500 to 3300 cm^{$^{-1}$} so not a carboxylic acid \checkmark

IR shows absorption at 1700 cm⁻¹ due to a C=O bond

OR absorption at 1700 cm⁻¹ indicates a ketone **OR** aldehyde present

Identification and equation

F is CH₃COCH₃ **OR** propanone ✓

E is CH₃CHOHCH₃ **OR** propan-2-ol ✓

 $CH_3CHOHCH_3 + [O] \rightarrow CH_3COCH_3 + H_2O$

If \mathbf{F} has been incorrectly identified as propanal, mark identification and equation as ECF, so $\max = 2$

ALLOW E is CH₃CH₂CH₂OH ✓

ALLOW: $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$

The mark scheme for \mathbf{F} = propanoic acid is shown below.

mass spec of E-Remember to check the spectrum

QWC – mass spec gives M⁺ or molecular ion of 60

OR mass spec gives parent ion of 60

OR highest m/z (**OR** m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃

OR m/z = 45 indicates presence of CH₃CHOH

OR CH_2CH_2OH **OR** C_2H_5O \checkmark

IR of F- Remember to check the spectrum

IR shows (broad) absorption somewhere between 3500 and 2500 cm⁻¹ suggests carboxylic acid **OR** O−H bond ✓

IR shows absorption at 1700 cm⁻¹ due to C=O \mathbf{OR} absorption at 1700 cm⁻¹ indicates a carboxylic acid \checkmark

Identification and equation

F is CH₃CH₂COOH **OR** propanoic acid ✓
E is CH₃CH₂CH₂OH **OR** propan-1-ol ✓
CH₃CH₂CH₂OH + 2[O] → CH₃CH₂COOH + H₂O ✓

Extra guidance for marking of question

If E has **not** been identified **OR** if F has been identified as a **ketone** or aldehyde, use the **first** mark scheme

If F has been identified as a carboxylic acid, use the second mark scheme

Mass spec

These two marking points stand as **independent** marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified. The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the –OH has been clearly identified

ALLOW ECF for identification of **F** e.g. if **E** is pentan-2-ol \star then an answer of pentan-2-one for **F** will be given a mark \star as ECF

ALLOW identification marks for **E** and **F** from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of **any** alcohol to the appropriate product.

ALLOW molecular formulae in equations,

i.e.
$$C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark$$
; $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark$; $C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

[7]

2. (a) method 1:

fermentation of sugars or carbohydrates **OR** reaction with yeast with sugar or carbohydrates \checkmark $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$

method 2:

hydration of ethene **OR** reaction of ethene with water **OR** reaction of steam with ethene \checkmark

$$C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$$
ALLOW sugar

ALLOW sugar from equation

ALLOW C_2H_6O in equation

ALLOW correct multiples

IGNORE state symbols

ALLOW ethene from the equation

IGNORE mention of any catalyst

ALLOW C_2H_6O in equation **OR** H_2O over the arrow

ALLOW correct multiples

IGNORE state symbols

4

(b) (i)
$$(CH_3)_2CO$$
 OR

$$(CH_3)_2CHOH + [O] \rightarrow (CH_3)_2CO + H_2O \checkmark$$

If name and formula given both need to be correct

ALLOW propanone OR acetone

IGNORE propone

NOT incorrect named compound

$$ALLOW C_3H_8O + [O] \rightarrow C_3H_6O + H_2O$$

ALLOW O instead of [O]

ALLOW correct multiples

IGNORE state symbols

2

3

(ii) CH₃CH₂COOH **OR** propanoic acid ✓

Any number or range of numbers between 1750–1640 (cm $^{-1}$) for C=O \checkmark

Any number or range of numbers between 2500–3300 (cm $^{-1}$) for O–H \checkmark

ALLOW C=O and O—H marks independent of compound identified **i.e. stand alone marks**

ALLOW correct bonds shown by the appropriate absorption on the IR spectrum

IGNORE reference to C—O bond

3

(c) (i) 2-methylpropan-2-ol ✓

ALLOW methylpropan-2-ol OR tertiarybutanol

1

(ii) ester ✓

1

(iii) $CH_3CO_2C(CH_3)_3$ **OR** $CH_3COOC(CH_3)_3$

OR

ester group shown 🗸

rest of molecule ✓

ALLOW skeletal formula OR displayed formula

ALLOW ester linkage even if rest of structure is wrong

2

[13]

3. (a) (i)

$$C_2H_5$$
 C_2H_5
 C

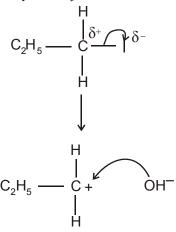
C–I curly arrow from the bond not from carbon atom ✓

curly arrow from the OH⁻ ✓

correct partial charges on C—I ✓

no need to show any lone pairs on oxygen but must have a clear negative sign rather than partial negative charge

IGNORE lone pairs


IGNORE products of this reaction

ALLOW curly arrow from a negative charge or from any part of hydroxide ion

If SNI mechanism is given then use the mark scheme below correct partial charges on C-I

C–I curly arrow from the bond not from carbon atom \checkmark

curly arrow from the OH[−] *to the correct carbocation* ✓

3

(ii) nucleophilic substitution ✓

1

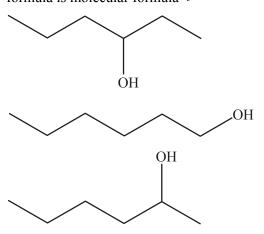
(b) C-I bonds broken more easily ✓
C-I bonds are weaker **OR** have less bond enthalpy **OR** C-I bonds are longer ✓

ALLOW ora e.g. C—Br bonds are stronger **OR** broken less easily

2

[6]

4. from IR absorption, **J** contains O–H **OR** from IR **J** is an alcohol \checkmark


C: H: O =
$$\frac{70.59}{12.0}$$
: $\frac{13.72}{1.0}$: $\frac{15.69}{16.0}$

OR 5.8825 : 13.72 : 0.9806 ✓

empirical formula = $C_6H_{14}O$ \checkmark

(from mass spectrum), $M_{\rm r} = 102 \checkmark$

evidence that it has been shown that the empirical formula is the molecular formulae e.g. Mr of $C_6H_{14}O = 102$ so empirical formula is molecular formula \checkmark

One mark for each correct structure \checkmark \checkmark

This is a QWC mark

ALLOW two marks for correct empirical formula with no working out

This is a QWC mark

ALLOW structural or displayed formulae

IGNORE incorrect names

ALLOW one minor slip in drawing structures e.g. one missing hydrogen but **ALLOW** ecf for bigger slips such as showing just sticks and no hydrogen atoms

ALLOW bond to H in OH

ALLOW one mark for three isomers of $C_6H_{13}OH$ whether branched or unbranched as a catch mark if no other mark has been awarded for the structures

If more than three isomers of $C_6H_{13}OH$ drawn

- 1 branched and 3 unbranched award two marks
- any other combination award one mark

ALLOW one mark for hexan-1-ol, hexan-2-ol and hexan-3-ol if structures not drawn

[8]

5. (i) Any two realistic fragments,

e.g.
$$CH_3^+$$
: 15; $C_2H_5^+$: 29; $C_3H_7^+$: 43; $C_4H_9^+$: 57; OH^+ : 17, etc. (1) (1)

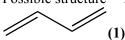
Do not penalise missing charge.

2

(ii) breathalysers/monitoring of air pollution, MOT emission testing, etc. (1)

[3]

6. mole ratio = 88.89/12 : 11.1/1 = 7.41 : 11.1 (1)


empirical formula =
$$C_2H_3$$
 (1)

relative mass of $C_2H_3 = 27$.

 $M_{\rm r} = 2 \times 29$ so molecular formula = C4H6 (1)

X reacts with 2 mol H₂ so there are 2 double bonds (1)

Possible structure = 1,3-butadiene /

[5]

- 7. (a) (i)
 - $Cr_2O_7^{2}$

1 1

(ii) Orange to green/black/blue

1

(b) (i) contains a C=O/aldehyde, ketone, carboxylic acid and ester/

1

Plymstock School

7

carbonyl/carbonyl in an aldehyde

(ii) does **not** contain a O–H/ (hydrogen bonded in a) carboxylic acid

(iii) distillation (no mark) **because** distillation allows loss of volatile components /removes butanal from oxidising mixture prevents formation of RCOOH/ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed

[7]

1

2

1

8. (i)
$$H^+ \checkmark Cr_2O_7^{2-}$$

(ii)

(iii) carboxylic acid would have an absorption between $1680 - 1750 \text{ cm}^{-1} / 1700 \text{ cm}^{-1}$ or $2500 - 3300 \text{ cm}^{-1}$.

[6]

- 9. (a) (i) (volatile components) can escape/distil out

 ethanal is most volatile/b pt less than 60°C/partial oxidation

 1
 - (ii) (volatile components) cannot escape/ refluxed 1 complete oxidation will be achieved/oxidised to the acid 1

(b)
$$C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$$

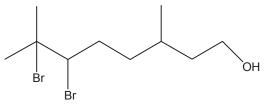
 $(CH_3COOH + H_2O \checkmark)$ 2

(c) spectrum C 1
spectrum C only shows absorption at 1700 cm⁻¹ for the C=O 1
the other two spectra contain the OH group absorption at approx 3000 cm⁻¹ 1

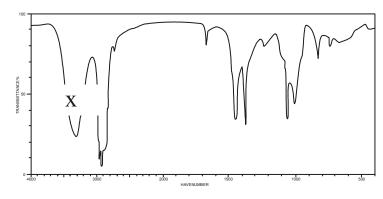
[9]

10. acrylic acid 1
approx 1700 cm⁻¹ (range 1650 – 1750) indicates C=O 1

approx 3000 cm ⁻¹ (range 2500- 3300) indicates	О-Н
not 3230 – 3550 cm ⁻¹	


[3]

[9]


- 11. (a) (i) alkene ✓1 alcohol/hydroxy/hydroxyl ✓
 - •

1

- (b) (i) $I = \text{alkene \& } II = \text{alcohol... both are needed } \checkmark$
 - (ii) decolourised / colourless ✓ 1
 - (iii) ✓

(iv) X as shown below ✓

- (c) (i) Ni/Pt/Rh/Pd ✓
 - (ii) compound **B** is $C_{10}H_{22}O$ \checkmark
 - (iii) $C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$ 1

() 10 20 2 10 22

- 12. (a) (i) Alkene/C=C ✓ 1
 Alcohol/ROH/hydroxy/hydroxyl/OH (not OH or hydroxide) ✓ 1
 - (ii) One of the C in both C=C is joined to two atoms or groups that are the same ✓

(b)	Obser	rvation	decolourisation (of Br₂) ✓	1
	Mole	cular formula	$C_{10}H_{18}OBr_4 \checkmark \checkmark$	2
			$C_{10}H_{18}OBr_2$ gets 1 mark	
(c)	reage	nt	CH₃COOH ✓	1
	catalyst		$\mathrm{H}_2\mathrm{SO}_4/\mathrm{H}^+/\mathrm{HC}l$ (aq) or dilute loses the mark \checkmark	1
(d)	(i)		$C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2
	(ii)	1 mark for H ₂ O an The infra-red spect	trum was of compound Y	
		because absorption	between 1680 − 1750 cm ⁻¹ indicates a C=O ✓	1
		and the absence of	a peak between 2500 – 3300 cm ⁻¹ shows the absence	
		of the OH hydroge	n bonded in a carboxylic acid 🗸	1 [12]