Oxford Cambridge and RSA

GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements
Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations available in RM Assessor.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
E	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
A	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\boldsymbol{S}	Correct response

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

3. The following questions should be marked using ALL appropriate annotations to show where marks have been awarded in the body of the text:
2(a)
4(b)(ii)
4(c)
4(d)
5(c)(i)
5(c)(ii)
5(d)(iv)
6(c)
8(e)

Question			Answer	Marks	Guidance
1	(a)		IGNORE any charges shown within complexes (treat as rough working) Formulae 2 marks $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ $\left[\mathrm{CuCl}_{4}\right]^{2-} \checkmark$ Colours blue AND yellow \checkmark Mark independently of formulae	3	For charges, ALLOW +2 and -2 Square brackets required, i.e. DO NOT ALLOW Cu($\left.\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}$ ALLOW Ligands in any order ALLOW CuCl ${ }_{4}{ }^{2-}$ i.e. no brackets $\mathrm{OR} \mathrm{Cu}(\mathrm{Cl})_{4}{ }^{2-}$ For $\mathrm{CuCl}_{4}{ }^{2-}$, $\mathbf{A L L O W}$ green-yellow OR yellow-green DO NOT ALLOW green For $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ DO NOT ALLOW pale blue, light blue DO NOT ALLOW precipitate with blue OR yellow
1	(b)	(i)	Donates two electron pairs to a metal ion/metal/ Cu^{2+} AND forms two coordinate bonds to a metal ion/metal/Cu ${ }^{2+} \checkmark$	1	ALLOW lone pairs for electron pairs ALLOW molecule/atom/ion/substance for 'ligand' ALLOW dative (covalent) bonds for coordinate bonds ALLOW transition element for metal Two is needed once only e.g. Donates two electron pairs to form coordinate bonds to a metal ion/metal/ Cu^{2+} Donates electron pairs to form two coordinate bonds to a metal ion/metal/ Cu^{2+} DO NOT ALLOW donates two electron pairs to form one/a coordinate bond

Question			Answer		Marks	Guidance
1	(b)	(ii)			3	FULL ANNOTATIONS MUST BE USED 2 marks: one for each correct isomer TAKE CARE: structures may be in different orientations and in different order IF BOTH isomers are 'correct', but O connectivity wrong, AWARD 1 mark for both structures Check $\mathrm{H}_{2} \mathrm{O}$ ligands carefully for connectivity ALLOW $\mathrm{H}_{2} \mathrm{O}$ reversed shown as $-\mathrm{O}_{2} \mathrm{H}$ IGNORE charges (anywhere) NOTE: For each structure, ALL O atoms must be shown AND For $\left(\mathrm{COO}^{-}\right)_{2}$, ALLOW skeletal, structural or displayed formula DO NOT ALLOW structures such as those shown below
			cis \checkmark trans optical \checkmark	cis trans \checkmark optical		1 mark: for whole of 2nd row for whole of 'Type' row i.e. (cis AND optical) AND trans only

Question			Answer	Marks	Guidance
1	(b)	(iii)	$\mathrm{CuC}_{4} \mathrm{H}_{4} \mathrm{O}_{10}{ }^{2-}$ Formula $2-\text { charge } \checkmark$ MARK formula and charge INDEPENDENTLY	2	Empirical formula essential, e.g. DO NOT ALLOW Cu(COO) $)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ for formula mark ALLOW any order of elements in formula ALLOW -2 for charge
			Total	9	

	estion	Answer	Marks	Guidance
2	(a)	initial rates data (3 marks) NOTE: Each comparison MUST relate to the actual change in concentration/rate in the experiments	3	FULL ANNOTATIONS MUST BE USED THROUGHOUT, - Square brackets NOT REQUIRED around $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}^{+}$and I^{-} - ALLOW 'doubles' for $\times 2$; quadruples for $\times 4$ ALLOW direct comparison of concentrations and rate, e.g. $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ changes by $\frac{0.0020}{0.0010}=2$, rate changes by $\frac{1.14 \times 10^{-5}}{5.70 \times 10^{-6}}=2$ AND 1st order (Expts $1 \& 2$) DO NOT ALLOW I_{2} for I^{-} IGNORE $\left[\mathrm{H}^{+}\right]$for Expts 3 \& 4
		Calculation of rate constant (3 marks), EITHER $k=\frac{5.70 \times 10^{-6}}{0.0010 \times 0.20}$ OR 2.85×10^{-2} OR 0.0285 OR $0.029 \checkmark$ $k=2.9 \times 10^{-2} \checkmark(2 \mathrm{SF}$ in standard form) Subsumes previous mark if no working shown $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \checkmark$	3	IGNORE working DO NOT ALLOW 0.03 ALLOW ECF from error in powers of 10 ONLY e.g. 2.9×10^{-3} by use of 0.010 instead of 0.0010 DO NOT ALLOW 2.90×10^{-2} (3 SF) OR 29×10^{-3} (Not standard form) ALLOW mol ${ }^{-1}$, dm^{3} and s^{-1} in any order, e.g. $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$

Question			Answer		Marks	Guidance
2	(b)		H^{+}ions are consumed/used up OR H^{+}ions are in the (overall) equation \checkmark		1	ALLOW H ${ }^{+}$is not regenerated/reformed ALLOW H^{+}is a reactant but not a product ALLOW 'it' for H^{+} IGNORE H^{+}is not in the rate equation/does not affect rate IGNORE does not take part in rate-determining step
2	(c)	(i	The slowest/slow step \checkmark		1	ALLOW step that takes the longest time
2	(c)	$\begin{array}{\|l\|} \hline \text { (i } \\ \text { i) } \end{array}$	NO ECF from incorrect rate equation Principles - $\mathrm{H}_{2} \mathrm{O}_{2}$ and I^{-}must be the reactants in 1st step - 2nd mark only to be awarded if 1 st mark scored - Step 4 is independent Reactants of Step 1 as $\mathrm{H}_{2} \mathrm{O}_{\mathbf{2}} \mathbf{+}^{-}$ Step 1: $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-}$ Products of Step 1 AND all of Step 2 Step $1 \rightarrow \mathrm{IO}^{-}+\mathrm{H}_{2} \mathrm{O}$ AND Step 2: $\mathrm{H}^{+}+\mathrm{IO}^{-} \rightarrow \quad \mathrm{HIO} \checkmark$ Step 4 (Independent mark) $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$		3	IGNORE state symbols Elements can be in any order in formulae Alternatives for 2nd mark Step 1: AND Step 2: $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \xrightarrow{\rightarrow \mathrm{HIO}_{2} \mathrm{O} \mathrm{OH}^{-}}$ Step 1: $\quad \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{I}^{-}$ AND Step 2: $\quad \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} I^{-} \rightarrow \mathrm{HIO}+\mathrm{H}_{2} \mathrm{O} \checkmark$ Other possibilities, contact TL ALLOW $\begin{aligned} & 2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$
				Total	11	

Question		Answer	Marks	Guidance
$\mathbf{3}$	(a)		(enthalpy change for) 1 mole of gaseous ions OR 1 mole of hydrated ions/aqueous ions \checkmark gaseous ions forming aqueous/hydrated ions \checkmark	$\mathbf{2}$

Question			Answer	Marks	Guidance
3	(b)	(i)	4 marks for species AND state symbols on all 4 energy levels (including added energy level) 1 mark for B, C AND D labels OR enthalpy values AND arrow directions correct \checkmark ALLOW K ${ }_{2} \mathrm{SO}_{4}(\mathrm{aq})$ for $2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ ALLOW arrows not touching lines. Direction is important: - FROM $_{2} \mathrm{~K}^{+}(\mathrm{g})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{g})$ line - $\mathrm{FROM} \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ line See APPENDIX ' $2 \times$ ' is NOT required - part of calculation mark	5	IF extra energy level is above top line OR below bottom line, DO NOT ALLOW mark for species on this line. See APPENDIX ALLOW C and \mathbf{D} with associated labels, the other way round: State symbols are essential IF no extra energy level is shown with \mathbf{C} and \mathbf{D} combined forming $2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$, - No mark for the extra energy level with species - No mark for labels as C and D are combined Therefore 3 max for species on energy levels provided
3	(b)	(ii)	ΔH (hydration) $\mathrm{SO}_{4}{ }^{2-}=-1099\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$	1	ONLY correct answer

Question			Answer	Marks	Guidance
3	(c)	(i)	Aqueous particles are more disordered than solid (particles) OR Solid particles are more ordered than aqueous (particles) \checkmark	1	For particles, ALLOW ions DO NOT ALLOW molecules/atoms ALLOW 'When the state changes from solid to aqueous, disorder increases' For more disordered, ALLOW less ordered/ more freedom/ more ways of arranging energy/ more random For aqueous particles, ALLOW particles in solution IGNORE dissolved
3	(c)	(ii)	Calculation (2 marks) $\begin{gathered} \Delta G=24-(298 \times 0.225) \text { OR } 24-67.05 \\ \text { OR } \quad 24000-(298 \times 225) \text { OR } 24000-67050 \quad \text { (in } \mathrm{kJ}) \\ \end{gathered}$ Calculation of $\Delta \boldsymbol{G}$ (IGNORE UNITS) $\Delta G=-43\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ OR $-43000\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \checkmark$ Subsumes 1st calculation mark Reason for solubility Calculated value of $\Delta \mathrm{G}$ that is negative AND Statement that: ΔG is negative $O R \Delta G<0$ OR $-43<0$ OR $\Delta H-T \Delta S<0$ OR $T \Delta S>\Delta H \checkmark$	3	Contact TL if solely entropy approach rather than $\Delta \boldsymbol{G}$ ALLOW -43.1 OR -43.05 (calculator value) ALLOW 1 calculation mark (IGNORE units) for -67.(026) OR-67026 ECF from 225 instead of 0.225 18.(375) OR +18.375 ECF from 25 instead of 298 ALLOW other ECF from ONE error in 1st step of calc, e.g. incorrect value for ΔH such as -1099 from 3bii $\rightarrow-1166.05$ TAKE CARE that same units used for ΔH and ΔS NO reason mark from a +ve value of ΔG
			Total	12	

Question		Answer	Marks	Guidance
4	(a)	Iodine is non-polar OR lodine does not form H bonds with water \checkmark	1	IGNORE iodine is slightly polar IGNORE 'cannot bond to water' (too vague) IGNORE ‘Lack of a lone pair' IGNORE 'inability to induce a dipole
4	(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $K_{\mathrm{c}}=104 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ award 4 marks: 3 for calculation of 104 from data, 1 for units Equilibrium concentrations (mol $\times 5$) (1 mark) $\begin{aligned} \mathrm{I}_{2} & =4.00 \times 10^{-5} \times 5 \end{aligned}=2.00 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right), ~\left(\begin{array}{lll} & =0.4702\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-} \\ \text {AND I } & =9.404 \times 10^{-2} \times 5 & =9.80 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{array}\right.$ Calculation of K_{c} and units (3 marks) $\begin{aligned} & K_{\mathrm{c}}=\frac{\left[\mathrm{I}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{I}_{2}(\mathrm{aq})\right] \times\left[I^{-}(\mathrm{aq})\right]} \text { OR } \frac{9.80 \times 10^{-3}}{2.00 \times 10^{-4} \times 0.4702} \\ & =104 \checkmark \quad \text { Must be } 3 \mathrm{SF} \\ & \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{OR} \mathrm{~mol}^{-1} \mathrm{dm}^{3} \end{aligned}$	4	FULL ANNOTATIONS MUST BE USED Throughout, at least 3SF but ALLOW absence of trailing zeroes e.g. for 9.80×10^{-3} ALLOW 9.8×10^{-3} FOR I- 0.4702, ALLOW $0.47(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \quad$ still $\rightarrow 104$ for calc State symbols not required in K_{c} expression ALLOW ECF from incorrect concentrations Any ECF value MUST be to $\mathbf{3} \mathbf{S F}$ for K_{c} value NOTE: With K_{c} upside down, units become $\mathrm{mol} \mathrm{dm}^{-3}$ by ECF

Question		Answer	Marks	Guidance
4	(c)	$\mathrm{Ag}^{+} /$silver nitrate reacts with I^{-}to form $\mathrm{AgI} /$ silver iodide $\mathrm{OR} \mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{AgI} \checkmark$ yellow precipitate/solid forms Equilibrium 2 shifts to the left Equilibrium 1 shifts to left AND I_{2} comes out of solution/less I_{2} dissolves/ I_{2} precipitates/black solid/grey solid/violet solid	4	FULL ANNOTATIONS MUST BE USED DO NOT ALLOW cream OR cream-yellow ALLOW just 'yellow' if supported by Agl(s) somewhere
4	(d)	in all equations ALLOW equilibrium signs IGNORE state symbols Reaction 1: 1 mark $2 \mathrm{I}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{I}_{2} \mathrm{O}_{5} \checkmark$ Reaction 2: 2 marks 1st mark: ALL CORRECT species $\text { e.g.: } \mathrm{I}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$ 2nd mark for CORRECT balanced equation $\checkmark \checkmark 3 \mathrm{I}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{I}^{-}+1 \mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$	3	FULL ANNOTATIONS MUST BE USED ALLOW correct multiples throughout, e.g. $\mathrm{I}_{2}+2 \frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{I}_{2} \mathrm{O}_{5}$ For 1st mark, IGNORE e^{-}present ALLOW species/equation with NaOH or KOH , $\text { e.g. } \quad 3 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Na}^{+}$ ALLOW $\begin{gathered} 3 I_{2} \\ +6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaI}+\mathrm{NaIO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$ Species: $\mathrm{I}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{I}^{-}+\mathrm{IO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \checkmark$ OR Equation: $3 \mathrm{I}_{2}+4 \mathrm{OH}^{-} \rightarrow 5 \mathrm{I}^{-}+\mathrm{IO}_{2}^{+}+2 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ Species: $\mathrm{I}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{I}^{-}+\mathrm{IO}^{3+}+\mathrm{H}_{2} \mathrm{O} \checkmark$ OR Equation: $3 \mathrm{I}_{2}+2 \mathrm{OH}^{-} \rightarrow 5 \mathrm{I}^{-}+1 \mathrm{O}^{3+}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$
		Total	12	

	uestis	Answer	Marks	Guidance
5	(a)	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \checkmark$ IGNORE state symbols	1	$\operatorname{IGNORE} \frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{HNO}_{2}\right]}$ OR $\frac{\left[\mathrm{H}^{+}\right][\mathrm{A}]}{[\mathrm{A}]}$ ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}$for H^{+} Square brackets required
5	(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.12 award $\mathbf{2}$ marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}}\left[\mathrm{HNO}_{2}\right]}=7.502 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & \mathrm{pH}=-\log 7.502 \times 10^{-3}=2.12 \checkmark \quad \mathrm{pH} \text { to } 2 \mathrm{DP} \end{aligned}$	2	\qquad ALLOW intermediate value from 3 SF (7.50 up to calculator value of $7.501999733 \times 10^{-3}$ ALLOW 1 mark for 2.1 OR answer > 2 DP (i.e. not 2 DP) ONLY ALLOW pH mark by ECF if K_{a} AND 0.120 used and AND pH <7 COMMON ERRORS (MUST be to 2 DP)

Question			Answer	Marks	Guidance
5	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.43, AWARD 4 marks Expression: $K_{a} \times$ acid/base ratio Use of $K_{\mathrm{a}} \times \frac{\left[\mathrm{HNO}_{2}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}$OR $4.69 \times 10^{-4} \times \frac{\left[\mathrm{HNO}_{2}\right]}{\left[\mathrm{NO}_{2}^{-}\right]} \checkmark$ Using correct concs/mol in expression $\left[\mathrm{H}^{+}\right]=4.69 \times 10^{-4} \times \frac{0.0400}{0.0500} \checkmark \quad \text { Subsumes previous mark }$ Calculation of $\left[\mathrm{H}^{+}\right]$ $\left[\mathrm{H}^{+}\right]=3.752 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ pH to 2 DP (From 3.42573717) $\mathrm{pH}=-\log 3.752 \times 10^{-4}=3.43$ NO marks are available using K_{a} square root approach (weak acid pH) $K_{w} / 10^{-14}$ approach (strong base pH) ALLOW alternative approach based on HendersonHasselbalch equation (ALLOW $-\log K_{\mathrm{a}}$ for $\mathrm{p} K_{\mathrm{a}}$) $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{HNO}_{2}\right]} \text { OR } \mathrm{p} K_{\mathrm{a}}-\log \frac{\left[\mathrm{HNO}_{2}\right]}{\left[\mathrm{NO}_{2}\right]} \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{0.0500}{0.0400} \text { OR } \mathrm{p} K_{\mathrm{a}}-\log \frac{0.0400}{0.0500} \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+0.097 \checkmark \\ & \mathrm{pH}=3.329+0.097=3.43 \checkmark \end{aligned}$	4	FULL ANNOTATIONS MUST BE USED ALLOW just $K_{\mathrm{a}} \times \frac{\text { acid }}{\text { salt }}$ expression Mark by ECF from $4.69 \times 10^{-4} \times \frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]} \quad$ inverted expression Mark by ECF from incorrect $\left[\mathrm{HNO}_{2}\right]$ and $\left[\mathrm{NO}_{2}{ }^{-}\right]$ ONLY award marks for a pH calculation via K_{a} AND using concentrations/mol derived from the question DO NOT ALLOW final pH mark by ECF if $\mathrm{pH}>7$ COMMON ERRORS BUT CHECK WORKING $\mathrm{pH}=2.82 \quad 3$ marks initial concs: 0.200 and 0.0625 pH = $3.23 \quad 3$ marks 0.0400 and 0.0500 acid/base ratio inverted pH = $3.83 \quad 2$ marks initial concs: 0.200 and 0.0625 and ratio inverted pH = $2.73 \quad 3$ marks Incorrect $\left[\mathrm{NO}_{2}^{-}\right]=0.01$ and correct $\left[\mathrm{HNO}_{2}\right]=0.04$ pH = $4.03 \quad 3$ marks correct $\left[\mathrm{NO}_{2}^{-}\right]=0.05$ and incorrect $\left[\mathrm{HNO}_{2}\right]=0.01$

Question			Answer	Marks	Guidance
5	(c)	(ii)	Equilibrium: 1 mark $\mathrm{HNO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{NO}_{2}^{-} \checkmark$ (ignore state symbols) Control of pH: 2 marks (QWC) Added HCl $\mathrm{NO}_{2}{ }^{-}$reacts with added acid $/ \mathrm{HCl} / \mathrm{H}^{+}$ $\mathrm{OR} \mathrm{NO}_{2}^{-}+\mathrm{H}^{+} \rightarrow$ OR more HNO_{2} forms \checkmark Added NaOH HNO_{2} reacts with added alkali/ $\mathrm{NaOH} / \mathrm{OH}^{-}$ OR $\mathrm{HNO}_{2}+\mathrm{OH}^{-} \rightarrow$ OR more NO_{2}^{-}forms OR H^{+}reacts with added alkali/ NaOH $\mathrm{ORH}^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$ Equilibrium shift: 1 mark for shifts in $\mathrm{HNO}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathbf{N O}_{2}{ }^{-}$(See 1st mark) Equilibrium for added acid \rightarrow left AND Equilibrium for added alkali \rightarrow right \checkmark (QWC)	4	FULL ANNOTATIONS MUST BE USED IGNORE HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$ Equilibrium sign essential BUT ALLOW small slips in its appearance if it is obviously an attempt to show an equilibrium sign rather than an arrow QWC: Quality of written communication DO NOT ALLOW HA and A^{-}for HNO_{2} and NO_{2}^{-} IGNORE just acid reacts with added alkali IGNORE just conjugate base/salt/base reacts with added acid DO NOT ALLOW salt/base reacts with added acid AWARD 'shift mark' ONLY if correct equilibrium equation has been given IGNORE any other equilibria in response

Question			Answer	Marks	Guidance
5	(d)	(i)	Endothermic AND K_{w} increases with temperature OR Endothermic AND dissociation increases with temperature OR Endothermic AND (dissociation) involves breaking bonds \checkmark	1	Endothermic and reason required for the mark ALLOW Endothermic AND increasing temperature shifts equilibrium/reaction to the right/favours forward reaction DO NOT ALLOW breaking hydrogen bonds OR intermolecular bonds/forces
5	(d)	(ii)	OH concentration $\left[\mathrm{OH}^{-}\right]=\frac{9.311 \times 10^{-14}}{1.00 \times 10^{-7}}=9.311 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\vee}$ Explanation (dependent on 1st mark) $\left.9.311 \times 10^{-7}>1 .(00) \times 10^{-7} \mathrm{OR}^{[} \mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right] \mathrm{OR} \mathrm{OH}^{-}$in excess AND Alkaline \checkmark	2	$\mathrm{H}^{+} \mathrm{OR} \mathrm{OH}^{-}$concentration (neutral pH) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{ }\left(9.311 \times 10^{-14}\right)=3.05 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Explanation (dependent on 1st mark) $\mathrm{pH}=-\log \left(3.05 \times 10^{-7}\right)=6.5 \rightarrow 6.515501837 \text { (calc) }$ AND Alkaline \checkmark
5	(d)	(iii)	$\mathrm{p} K_{\mathrm{w}}=13.03 \checkmark$	1	ONLY correct answer

Question			Answer	Marks	Guidance
5	(d)	(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 10.76, award 3 marks Dilution 1 mark $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=[\mathrm{NaOH}(\mathrm{aq})]=\frac{0.0270}{5}=0.00540\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ [H^{+}] 1 mark $\begin{array}{r} {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\frac{9.311 \times 10^{-14}}{0.00540}=1.72 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ \text { Calculator: } 1.724259259 \times 10^{-11} \end{array}$ pH 1 mark $\mathrm{pH}=-\log 1.72 \times 10^{-11}=10.76$ ALLOW pOH method for 2nd and 3rd mark: $\begin{aligned} & \mathrm{pOH}=-\log 0.00540=2.27 \checkmark \quad(\text { calculator } 2.26760624) \\ & \mathrm{pH}=13.03-2.27=10.76 \checkmark \end{aligned}$	3	FULL ANNOTATIONS MUST BE USED ALLOW dilution AFTER calculation of $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ $\text { i.e. original }\left[\mathrm{H}^{+}\right]=\frac{9.311 \times 10^{-14}}{0.0270}=3.45 \times 10^{-12}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ After dilution, $\left[\mathrm{H}^{+}\right]=3.45 \times 10^{-12} \times 5=1.72 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\mathrm{pH}=-\log 1.72 \times 10^{-11}=10.76$ ALLOW ECF from incorrect $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ provided that $\mathrm{pH}>7$ COMMON ERRORS (MUST be to 2 DP) $\mathrm{pH}=11.73 \quad \text { At } 25^{\circ} \mathrm{C}\left(1.00 \times 10^{-14}\right)$ $\mathrm{pH}=-\log 1.85 \times 10^{-12}=11.73$ $\mathbf{p H}=11.46$ No dilution at $60^{\circ} \mathrm{C}\left(9.311 \times 10^{-14}\right) \quad 2$ marks $\mathrm{pH}=-\log \left(3.45 \times 10^{-12}\right)=11.46$ $\mathrm{pH}=12.43$ No dilution AND $25^{\circ} \mathrm{C}\left(1.00 \times 10^{-14}\right) \quad 1$ mark $\mathrm{pH}=-\log \left(3.70 \times 10^{-13}\right)=12.43$ $\mathbf{p H}=\mathbf{1 2 . 1 6 \times 5}$ instead of $\div 5$ at $60^{\circ} \mathrm{C}\left(9.311 \times 10^{-14}\right) \mathbf{2}$ marks $\mathrm{pH}=-\log \left(6.879 \times 10^{-13}\right)=12.16$ $\mathrm{pH}=13.13 \times 5$ instead of $\div 5$ at $25^{\circ} \mathrm{C}\left(1.00 \times 10^{-14}\right) \quad 1$ mark $\mathrm{pH}=-\log \left(7.407 \times 10^{-14}\right)=13.13$ NOTE: Attempts at dilution $\rightarrow 0.0270$ with error in powers of 10 $\rightarrow 12.46$ from 0.00270 , etc may give 2 marks by ECF
			Total	18	

Question			Answer	Marks	Guidance
6	(a)		Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode \checkmark Standard conditions Units essential Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND pressure of 100 kPa OR $10^{5} \mathrm{~Pa}$ OR $1 \mathrm{bar} \checkmark$	2	For e.m.f., ALLOW voltage OR potential difference/p.d. OR electrode/reduction/redox potential ALLOW e.m.f. of a cell ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) DO NOT ALLOW hydrogen fuel cell ALLOW 1M OR $1 \mathrm{~mol} / \mathrm{dm}^{3}$ DO NOT ALLOW 1 mol OR 1 mole ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
6	(b)	(i)	Complete circuit with voltmeter AND labelled salt bridge linking two half-cells \checkmark Cu electrode in Cu^{2+} Pt electrode in V^{2+} AND $\mathrm{V}^{3+} \checkmark$ Cu shown as + AND Pt shown as $-\checkmark$ electrons in wire AND ions in salt bridge \checkmark On diagram or stated	5	Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit DO NOT ALLOW half-cell with H_{2} added IGNORE any stated concentrations IGNORE 'anode' and 'cathode' In salt bridge, ALLOW any stated ion that may be present, e.g. $\mathrm{K}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{NO}_{3}^{-}, \mathrm{Cu}^{2+}, \mathrm{V}^{2+}, \mathrm{V}^{3+}$ IGNORE direction of travel of ions and electrons. ALLOW Cu half cell as + AND \vee half cell as -

Question			Answer	Marks	Guidance
6	(b)	(ii)	0.60 OR 0.6 (V) \checkmark	1	IGNORE any sign
6	(c)		Definitions: 1 mark Oxidising agent removes/accepts/gains electrons OR increases oxidation number (of another species) AND Reducing agent adds/donates/loses electrons OR decreases oxidation number (of another species) Oxidising agent: 2 marks Cr^{3+} oxidises $\mathrm{Al} \mathrm{OR} \mathrm{Cr}^{3+}$ acts as oxidising agent AND $3 \mathrm{Cr}^{3+}+\mathrm{Al} \rightarrow 3 \mathrm{Cr}^{2+}+\mathrm{Al}^{3+} \checkmark$ Explanation (dependent on Cr^{3+} oxidising AI above) E of redox system $2\left(\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}\right)$ is more positive /less negative (than E of system $1\left(\mathrm{~A} \mathrm{l}^{3+} / \mathrm{Al}\right)$) ORA, i.e. in terms of 1 being more negative (than 2) Reducing agent: 3 marks $\begin{aligned} & \mathrm{Cr}^{3+} \text { reduces } \mathrm{FeO}_{4}^{2-}\left(/ \mathrm{H}^{+}\right) \checkmark \\ & 2 \mathrm{Cr}^{3+}+2 \mathrm{FeO}_{4}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$ Explanation (dependent on Cr^{3+} reducing $\mathrm{FeO}_{4}{ }^{2-}$ above) E of redox system $5\left(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{Cr}^{3+}\right)$ is less positive/ more negative (than E of system $6\left(\mathrm{FeO}_{4}{ }^{2-} / \mathrm{Fe}^{3+}\right)$) ORA, i.e. in terms of 6 being more positive (than 5) \checkmark	6	FULL ANNOTATIONS MUST BE USED ALLOW oxidising agent decreases its oxidation number AND reducing agent increases its oxidation number IGNORE oxidising agent oxidises/is reduced OR reducing agent reduces/is oxidised In equations, - IGNORE state symbols (even if incorrect) - ALLOW \rightleftharpoons in equation IF more than one equation shown for Cr^{3+} as oxidising agent, CON and zero marks for 2 oxidising agent marks IGNORE equations with Cr^{2+} as reactant Explanations MUST be in terms of positive/negative: IGNORE 'higher' E OR 'greater' $\text { ALLOW } E_{\text {cell }}=+1.25 \mathrm{~V}(+ \text { sign required })$ IF more than one equation shown for Cr^{3+} as a reducing agent, CON and zero marks for 3 reducing agent marks IGNORE equations with Cr^{2+} as reactant Explanations MUST be in terms of positive/negative: IGNORE 'higher' E OR 'greater' ALLOW $E_{\text {cell }}=+0.87 \mathrm{~V}(+$ sign required $)$
			Total	14	

Question			Answer	Marks	Guidance
7	(a)	(i)	IGNORE any charges shown within complexes (treat as rough working) Complex ion C: $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ Solid D: $\mathrm{Ni}(\mathrm{OH})_{2}$ Complex ion $\mathrm{E}:\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \checkmark$	3	ALLOW +2 and -2 for charges Square brackets required ALLOW Ni($\left.\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ and $(\mathrm{OH})_{2}$ in any order IGNORE any square brackets Square brackets required TAKE CARE for round brackets within complex ion, i.e. $\left(\mathrm{H}_{2} \mathrm{O}\right)$, (OH) and (CN)

Question			Answer	Marks	Guidance
7	(a)	(ii)	Mark independently of 7(a)(i) ALLOW +2 and -2 for charges IGNORE any charges shown within complexes (treat as rough working) $\mathrm{Ni}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}$ Type of reaction: precipitation INDEPENDENT of equation $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$ Type of reaction: ligand substitution \checkmark INDEPENDENT of equation	4	For equations: IGNORE state symbol (even if wrong) Square brackets not required for $\mathrm{Ni}(\mathrm{OH})_{2}$ ALLOW $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$ ALLOW NiSO 4 (aq) $+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$ ALLOW NiSO $4(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ ALLOW acid/base OR neutralisation OR deprotonation ONLY IF $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ AND $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$ used ALLOW precipitate ALLOW $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{KCN} \rightarrow\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{~K}^{+}$ LOOK at formulae for E from 7(a)(i) (copied at bottom) ALLOW ECF in 7aii Equation for no round brackets around CN, i.e. $\left[\mathrm{NiCN}_{4}\right]^{2-}$ in $7 \mathrm{a}(\mathrm{i})$ This is the only ECF allowed from 7ai structures. ALLOW ligand exchange
7	(b)	(i)	linear \checkmark	1	IGNORE planar

Question			Answer	Marks	Guidance
7	(b)	(ii)	Au/Gold has been oxidised from 0 to +1 $\mathrm{O} / \mathrm{Oxygen} / \mathrm{O}_{2}$ has been reduced from 0 to $-2 \checkmark$	2	IF Ag referred to, rather than Au, treat as a slip and apply BOD ALLOW 0 to 1 (i.e. no + sign for +1) ALLOW 1 mark for ALL oxidation numbers correct with no oxidised or reduced OR oxidation and reduction wrong way round, e.g. Au goes from 0 to +1 and O goes from 0 to $-2 \checkmark$ Au is reduced from 0 to +1 and O is oxidised from 0 to $-2 \checkmark$
7	(b)	(iii)	IGNORE any charges shown within complexes (treat as rough working) $4 \mathrm{Au}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+4 \mathrm{OH}^{-} \checkmark \checkmark$ First mark for all 6 species Second mark for balancing	2	IF Ag referred to, rather than Au, treat as a slip and apply BOD IGNORE state symbols CARE: $\ln \left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$, - sign is OUTSIDE square brackets For 1st mark, IGNORE e^{-}present ALLOW 1 mark for balanced equation with CN^{-}missing, i.e. $4 \mathrm{Au}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{Au}^{+}+4 \mathrm{OH}^{-}$ ALLOW 1 mark rogue e^{-}on either side ALLOW multiples, e.g. $\begin{aligned} & 2 \mathrm{Au}+4 \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+2 \mathrm{OH}^{-} \\ & \mathrm{Au}+2 \mathrm{CN}^{-}+1 / 2 \mathrm{H}_{2} \mathrm{O}+1 / 4 \mathrm{O}_{2} \rightarrow\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+\mathrm{OH}^{-} \end{aligned}$
7	(b)	(iv)	$\mathrm{ClO}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols ALLOW e for electron ALLOW multiples
			Total	13	

Question		Answer	Marks	Guidance
8	(a)	$\mathrm{Cu}^{2+}:\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$ $C u^{+}:\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} \checkmark$	2	IGNORE repeated $1 \mathrm{~s}^{2}$ after $1 \mathrm{~s}^{2}$ prompt on answer line ALLOW $4 s^{0}$, either before or after 3d ALLOW upper case D, etc and subscripts, e.g. $3 \mathrm{~S}_{2} 3 \mathrm{P}^{6}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
8	(b)	IGNORE any charges shown within formulae (treat as rough working) $\begin{aligned} & \mathrm{CuCO}_{3}+2 \mathrm{HCOOH} \rightarrow \mathrm{Cu}(\mathrm{HCOO})_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\ & \mathrm{OR} \mathrm{CuO}+2 \mathrm{HCOOH} \rightarrow \mathrm{Cu}(\mathrm{HCOO})_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR} \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{HCOOH} \rightarrow \mathrm{Cu}(\mathrm{HCOO})_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	1	IGNORE state symbols In formula of $\mathrm{HCOOH} / \mathrm{HCOO}$, ALLOW H, C and O in ANY order ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ for $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} in carbonate equation ALLOW $(\mathrm{HCOO})_{2} \mathrm{Cu}$ for $\mathrm{Cu}(\mathrm{HCOO})_{2}$ DO NOT ALLOW equation with CuSO_{4}
8	(c)	$2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cul}(\mathbf{s})+\mathrm{I}_{2} \checkmark$ State symbol for Cul(s) ONLY required	1	ALLOW multiples, e.g. $\mathrm{Cu}^{2+}+2 \mathrm{I}^{-} \rightarrow \mathrm{Cul}(\mathbf{s})+1 / 2 \mathrm{I}_{2}$ IGNORE other state symbols, even if incorrect
8	(d)	Starch Blue/black to colourless/white MARK INDEPENDENTLY	2	IGNORE 'brown' in composite colour with blue or black, i.e. ALLOW blue/brown to colourless ALLOW black/brown to colourless DO NOT ALLOW just 'it turns colourless/is decoloured' Initial colour required IGNORE clear for colourless

Question		Answer	Marks	Guidance
8	(e)	WORKING REQUIRED Correct answer: $x=4$ required evidence of working $n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right) \mathrm{OR} n\left(\mathrm{Cu}^{2+}\right)=\frac{0.0420 \times 23.5}{1000}=9.87 \times 10^{-4}(\mathrm{~mol}) \checkmark$ In $250.0 \mathrm{~cm}^{3}$ solution, $n\left(\mathrm{Cu}^{2+}\right)=9.87 \times 10^{-3}(\mathrm{~mol}) \checkmark$ $M\left(\mathrm{Cu}(\mathrm{HCOO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)=\frac{2.226}{9.87 \times 10^{-3}}=225.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\checkmark}$ $\begin{aligned} x\left(\mathrm{H}_{2} \mathrm{O}\right) \text { has mass of } & 225.5-M\left(\mathrm{Cu}(\mathrm{HCOO})_{2}\right) \\ = & 225.5-153.5 \\ = & 72(.0) \checkmark \end{aligned}$ $x=\frac{72(.0)}{18(.0)}=4$ WHOLE NUMBER needed AND evidence of working \checkmark	5	FULL ANNOTATIONS MUST BE USED At least 3 SF required throughout Alternative approach for final 3 marks based on mass: $\begin{aligned} & \text { mass } \mathrm{Cu}(\mathrm{HCOO})_{2}=9.87 \times 10^{-3} \times 153.5=1.515 \mathrm{~g} \\ & n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{2.226-1.515}{18(.0)}=\frac{0.711}{18(.0)}=0.0395(\mathrm{~mol}) \\ & x=\frac{0.0395}{9.87 \times 10^{-3}}=4 \end{aligned}$ $\text { ALLOW Cu(HCOO })_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ COMMON ERRORS for 4 marks $\begin{aligned} & x=117 \quad(\text { calc } 116.78) \\ & \text { Use of } 9.87 \times 10^{-4}(\text { no scaling } \times 10) \rightarrow M=2255.319 \\ & x=17 \quad(\text { calc } 16.53) \quad 4 \text { marks } \\ & \text { Use of } 4.935 \times 10^{-4}\left(\text { Use of } 0.5 \times 9.87 \times 10^{-3}\right) \end{aligned}$ Check $n\left(\mathrm{Cu}^{2+}\right)$ for other ECFs Check for ECFs from incorrect M (anhydr salt) Actual $=153.5$
		Total	11	

APPENDIX Q3(b)

Extra energy line placed ABOVE top line
3 out of 4 marks awarded for energy lines and species.
Top arrow is shown FROM $2 \mathrm{~K}^{+}(\mathrm{g})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{g})$ and arrow directions correct. Letter labels correct so last mark is awarded. $4 / 5$ marks

Extra energy line placed BELOW bottom line 3 out of 4 marks awarded for energy lines and species.
Top arrow is shown $\operatorname{FROM} \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and arrow directions correct. Letter labels correct so last mark is awarded.
$4 / 5$ marks

Same as left-hand response
BUT top arrow shown $\mathrm{TO}^{2} \mathrm{~K}^{+}(\mathrm{g})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{g})$ so last mark not awarded 3/5 marks

Same as left-hand response

BUT bottom arrow shown $\mathrm{TO}_{\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \text { so last mark not awarded }}$ 3/5 marks

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

