GCE

Chemistry A

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

ALLOW Kekulé structures throughout
Question

	uesti		Answer	Mark	Guidance
1	(b			2	ALLOW any correct unambiguous structures ALLOW NO ${ }_{2}-$ Note: connectivity is NOT being assessed in this part
1	(c)		1st stage isomer: isomer $3 \checkmark$ product: reagents: Sn AND (conc) $\mathrm{HCl} \checkmark$ equation:		ANNOTATIONS MUST BE USED ALLOW structure of isomer 3 shown separately OR in equation ALLOW structure of product shown separately OR in equation ALLOW correct name (3,5-diaminomethylbenzene) IGNORE incorrect name DO NOT ALLOW CH ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NH}_{2}\right)_{2}$ ALLOW $\mathrm{Zn}+\mathrm{HCl} / \mathrm{H}_{2}+$ metal catalyst $/ \mathrm{LiAlH}_{4} / \mathrm{Na}$ in ethanol IGNORE NaBH_{4} ALLOW Sn and HCl followed by NaOH DO NOT ALLOW Sn and HCl and NaOH IF isomer 3 OR product are given in equation but not shown previously then credit here Also credit reagents here if shown (eg above arrow) ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous

Question			Answer	Mark	Guidance
2	(a)		propane-1,2,3-triol \checkmark	1	ALLOW absence of 'e' after 'propan' ALLOW 1,2,3-propanetriol ALLOW absence of hyphens 1, 2 and 3 must be clearly separated: ALLOW full stops: 1.2.3 OR spaces: 123 DO NOT ALLOW 123
2	(b)	(i)	methanol OR ethanol AND renewable	1	BOTH points required for the mark ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae ALLOW easy/cheap to manufacture/produce as alternative for renewable/from plants/from fermentation/burns more easily/efficiently
	(b)	(ii)	equilibrium shifts to right \checkmark	1	ALLOW equilibrium shifts in forward direction ALLOW more products form ALLOW greater yield OR fully reacts OR goes to completion DO NOT ALLOW improves atom economy

Question		Answer	Mark	Guidance
3	(a)	observation: silver OR Ag \checkmark type of reaction: oxidation \checkmark organic product:	3	ALLOW black OR grey ALLOW redox ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW carboxylate, $-\mathrm{COO}^{-}$
3	(b)	1 mark for curly arrow from H^{-}to C of $\mathrm{C}=\mathrm{O} \checkmark$ 1 mark for correct dipole on $\mathrm{C}=\mathrm{O}$ AND curly arrow from double bond to $\mathrm{O}^{\delta-} \checkmark$ 1 mark for correct intermediate with negative charge on O AND curly arrow from O^{-}to H of $\mathrm{H}-\mathrm{O}-\mathrm{H}$ AND curly arrow from $\mathrm{H}-\mathrm{O}$ to O of $\mathrm{H}-\mathrm{O}-\mathrm{H} \checkmark$ 1 mark for correct organic product \checkmark	4	ANNOTATIONS MUST BE USED ALLOW mechanism showing curly arrows from lone pair on H^{-}and O^{-}of intermediate Dipole not required on $\mathrm{H}-\mathrm{O}-\mathrm{H}$ DO NOT ALLOW incorrect dipole on $\mathrm{H}-\mathrm{O}-\mathrm{H}$ ALLOW 1 mark for correct intermediate with '-‘ charge on O AND curly arrow from O^{-}to H^{+} IGNORE missing OH^{-} DO NOT ALLOW incorrect second product

Question			Answer	Mark	Guidance
4	(a)	(i)	$\mathrm{ClCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}+3 \mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+\underset{\checkmark}{\mathrm{NH}_{4} \mathrm{Cl}}$	1	ALLOW use of two NH_{3} : $\mathrm{ClCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}+2 \mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+$ HCl ALLOW products as above $\mathbf{O R} \mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}+$ $\mathrm{NH}_{4} \mathrm{Cl}$ ALLOW use of one NH_{3} : $\mathrm{ClCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}+\mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}+\mathrm{H}^{+}+$ HCl ALLOW products as above $\mathbf{O R} \mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}+\mathrm{HCl}$ For alternatives below, for $\mathrm{NH}_{4} \mathrm{Cl}$, ALLOW $\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}$ OR $\mathrm{NH}_{4}^{+}+\mathrm{Cl}$ for HCl , ALLOW $\mathrm{H}^{+} \mathrm{Cl}^{-} \mathrm{OR} \mathrm{H}^{+}+\mathrm{Cl}^{-}$ for $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}$ ALLOW $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-} \mathrm{NH}_{4}^{+}$OR $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COONH}_{4}$ ALLOW R in equation in place of CH_{3} (either or both sides) ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae
	(a)	(ii)		1	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW product from carboxylate ion as nucleophile:

Question			Answer	Mark	Guidance
4	(b)	(i)	 OR	1	DO NOT ALLOW any structure containing C OR H (except in OH)
	(b)	(ii)		2	ALL bond linkages must be correct, eg the chiral C must be linked to the C of the COOH , the C of the $\mathrm{CH}_{2} \mathrm{COOH}$ and the N of the NH_{2} (connectivity is being tested) The 2nd mark is for the mirror image of an amino acid. This could be any amino acid EXCEPT glycine DO NOT penalise connectivity more than once ALLOW R in equation in place of $\mathrm{CH}_{2} \mathrm{COOH}$ (either or both sides) Each structure must have four central bonds, with at least two wedges, one in; one out For bond into paper, accept:
4	(c)		Disadvantages Any two from: - (one stereoisomer might have harmful) side effects \checkmark - reduces the (pharmacological) activity/effectiveness \checkmark - cost OR difficulty in separating stereoisomers \checkmark Synthesis of a single optical isomer Any two from: - using enzymes or bacteria - using a chiral catalyst OR transition metal complex/transition metal catalyst \checkmark - using chiral synthesis OR chiral starting material OR natural amino acid \checkmark	2 max 2 max	ANNOTATIONS MUST BE USED ALLOW optical isomer OR enantiomers as alternative for stereoisomers ALLOW a response that implies an increased dose ALLOW biological catalyst ALLOW 'chiral pool' OR L-amino acids OR D-sugars
			Total	8	

Question			Answer	Mark	Guidance
5	(a)	(i)	Adsorption \checkmark (onto the stationary phase) Quality of Written Communication 'Adsorption' must be spelled correctly	1	ALLOW adsorbtion or adsorb(s) or adsorbed spelled correctly at least once DO NOT ALLOW anything that begins with ab...
	(a)	(ii)	$0.2 \checkmark$	1	ALLOW any value in the range $0.1-0.3$ IGNORE significant figures DO NOT ALLOW fraction/percent as final answer
	(a)	(iii)	Spot may contain more than one compound/component \checkmark	1	ALLOW compounds have similar R_{f} values/adsorptions OR compounds have not (fully) separated OR B is spread over a large region OR compounds are similar IGNORE retention times
5	(b)	(i)	GC separates the components/compounds AND MS is compared to a database/reference \checkmark	1	ALLOW chromatography for GC ALLOW they have different retention times ALLOW MS analyses compounds/gives structural information/gives different mass spectra ALLOW (uses) fragmentation patterns/fragments/peaks/parts of the compound DO NOT ALLOW MS identifies compounds (in question) DO NOT ALLOW molecular ion alone $/ M_{r}$ etc.
		(ii)	nerol and geraniol AND they are stereoisomers OR primary alcohols \checkmark	1	Compounds AND reason required for the mark ALLOW they are E/Z isomers OR cis-trans isomers ALLOW straight-chain alcohols OR unsaturated alcohols
		(iii)	stereoisomers have the same structural formula AND different 3D arrangements	1	BOTH points required for the mark ALLOW different arrangements in space
		(iv)		1	Circle must include the correct $\mathrm{C}=\mathrm{C}$ double bond AND must not extend further than the adjacent atoms in the main chain, ie limit is:

Question			Answer	Mark	Guidance
6	(b)		Number of peaks for other three isomers matched to structures: Any 2 correct for 2 marks $\checkmark \checkmark$ 1 correct for 1 mark \checkmark 4 peaks 3 peaks 6 peaks Correct structure shown:	6	ALLOW 'carbon environments' for peaks
			Total	9	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

