General Certificate of Education

Chemistry 1421

CHEM1 Foundation Chemistry

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]| Question | Part | $\begin{aligned} & \hline \text { Sub } \\ & \text { Part } \end{aligned}$ | Marking Guidance | Mark | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (a) | | $2 s^{2} 2 p^{6} 3 s^{1}$ | 1 | $1 \mathrm{~s}^{2}$ can be rewritten
 Allow $2 s^{2} 2 p_{x}{ }^{2} 2 p_{y}{ }^{2} 2 p_{z}^{2} 3 s^{1}$
 Allow subscripts and capitals |
| 1 | (b) | (i) | Energy/enthalpy (needed) to remove one mole of electrons from one mole of atoms/compounds/molecules/elements
 OR
 Energy to form one mole of positive ions from one mole of atoms
 OR
 Energy/enthalpy to remove one electron from one atom
 In the gaseous state (to form 1 mol of gaseous ions) | | Energy given out loses M1
 M 2 is dependent on a reasonable attempt at M1
 Energy needed for this change $X(\mathrm{~g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{(-)}=2$ marks This equation alone scores one mark |
| 1 | (b) | (ii) | $\begin{aligned} & \mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{(-)} \\ & \mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)} \\ & \mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g}) \\ & \hline \end{aligned}$ | 1 | Do not penalise MG Not equation with X |
| 1 | (b) | (iii) | Electron being removed from a positive ion (therefore need more energy)/ electron being removed is closer to the nucleus $/ \mathrm{Mg}^{+}$ smaller (than Mg)/ Mg^{+}more positive than Mg | 1 | Allow from a + particle/ species Not electron from a higher energy level/or higher sub-level More protons $=0$ |
| 1 | (b) | (iv) | Range from 5000 to $9000 \mathrm{~kJ} \mathrm{~mol}^{-1}$ | 1 | |
| 1 | (c) | | Increase
 Bigger nuclear charge (from Na to Cl)/more protons
 electron (taken) from same (sub)shell/ similar or same shielding/ electron closer to the nucleus/smaller atomic radius | $\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \end{array}$ | If decrease CE = 0/3
 If blank mark on QWC
 If no shielding $=0$
 Smaller ionic radius $=0$ |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline 1 & \text { (d) } & & \text { Lower } & 1 & \begin{array}{l}\text { If not lower CE }=0 / 3 \\
\text { If blank mark on }\end{array}
$$

Allow does not increase

Not 2 p\end{array}\right]\) M3 dependent upon a reasonable | Two/pair of electrons in (3)p orbital or implied |
| :--- |
| repel (each other) |

Question	Part	Sub Part	Marking Guidance	Mark	Comments
2	(a)	(i)	$\begin{aligned} & M_{\mathrm{r}}=132.1 \\ & 0.0238 \end{aligned}$	1	132 Allow 0.024 Allow 0.0237 Penalise less than 2 sig fig once in (a)
2	(a)	(ii)	0.0476	1	$\begin{aligned} & 0.0474-0.0476 \\ & \text { Allow (a) (i) } \times 2 \\ & \hline \end{aligned}$
2	(a)	(iii)	1.21	1	Allow consequential from (a) (ii) ie allow (a) (ii) $\times 1000$ / 39.30 Ignore units even if wrong
2	(b)		$\frac{34 \times 100}{212.1}$ $=16.0(3) \%$		Allow mass or Mr of desired product times one hundred divided by total mass or Mr of reactants/products If $34 / 212.1$ seen correctly award M1 Allow 16\% 16 scores 2 marks
2	(c)		100(\%)	1	Ignore all working
2	(d)		$\begin{aligned} \mathrm{PV} & =\mathrm{nRT} \text { or } \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}} \\ \mathrm{n} & =\frac{100000 \times 1.53 \times 10^{-2}}{8.31 \times 310} \\ & =0.59(4) \end{aligned}$	1 1	If rearranged incorrectly lose M1 and M3 M2 for mark for converting P and T into correct units in any expression Allow 0.593 M3 consequential on transcription error only not on incorrect P and T

2	(e)	$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$	$\mathrm{H}_{2} \mathrm{O}$		
		(44.1\%)	55.9\%	1	M 1 is for 55.9
		$\begin{aligned} & 44.1 / 142.1 \\ & 0.310 \\ & =1 \end{aligned}$	$\begin{aligned} & 55.9 / 18 \\ & 3.11 \\ & =10 \end{aligned}$	1	Alternative method gives180 for water part =2 marks
		$x=10$		1	$\begin{aligned} & X=10=3 \text { marks } \\ & 10.02=2 \text { marks } \end{aligned}$

Question	Part	Sub Part	Marking Guidance	Mark	Comments
3	(a)		Hydrogen/H bonds van der Waals/vdw/ dipole-dipole/London/temporarily induced dipole/dispersion forces	1	1

3	(e)	Dative (covalent)/ coordinate (Lone) pair/both electrons/two electrons on $\mathrm{O}\left(\mathrm{H}_{2}\right)$ donated (to H^{+}) OR pair/both electrons come from $\mathrm{O}\left(\mathrm{H}_{2}\right)$	1 1	If not dative/coordinate CE = 0/2 If covalent or blank read on Explanation of a coordinate bond specific to oxygen or water required Not just $\mathrm{H}+$ attracted to lone pair since that is nearer to a H bond
3	(f)	ionic oppositely charged ions /+ and - ions or particles ions attract strongly OR strong/many (ionic) bonds must be broken	1	```if not ionic CE = 0 atoms or molecules loses M2 and M3 S loses M2 Reference to IMF loses M2 and M3```

Question	Part	Sub Part	Marking Guidance	Mark	Comments
4	(a)	(i)	single (C-C) bonds only/ no double ($\mathrm{C}=\mathrm{C}$) bonds C and H (atoms) only/purely/solely/entirely	1 1	Allow all carbon atoms bonded to four other atoms Single C-H bonds only $=0$ $\mathrm{C}=\mathrm{H} C E$ Not consists or comprises Not completely filled with hydrogen CH molecules $=\mathrm{CE}$ Element containing C and $\mathrm{H}=\mathrm{CE}$
4	(a)	(ii)	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$	1	$\begin{aligned} & \text { Formula only } \\ & \mathrm{C}_{\mathrm{x}} \mathrm{H}_{2 x+2} \end{aligned}$
4	(b)	(i)	$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1	Accept multiples Ignore state symbols
4	(b)	(ii)	gases produced are greenhouse gases/contribute to Global warming/effect of global warming/climate change	1	Allow CO_{2} or water is greenhouse gas/causes global warming Acid rain/ozone $\mathrm{CE}=0$
4	(c)		carbon	1	Allow C Allow soot
4	(d)	(i)	$\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{C}_{4} \mathrm{H}_{8}$ OR $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+2 \mathrm{C}_{2} \mathrm{H}_{4}$	1	Accept multiples
4	(d)	(ii)	Plastics, polymers	1	Accept any polyalkene / haloalkanes / alcohols
4	(d)	(iii)	so the bonds break OR because the bonds are strong	1	IMF mentioned = 0
4	(e)	(i)	1,4-dibromo-1-chloropentane / 1-chloro-1,4-dibromopentane	1	Ignore punctuation
4	(e)	(ii)	Chain/position/positional	1	Not structural or branched alone

Question	Part	$\begin{aligned} & \text { Sub } \\ & \text { Part } \end{aligned}$	Marking Guidance	Mark	Comments
5	(a)		Average/mean mass of (1) atom(s) (of an element) $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ OR (Average) mass of one mole of atoms $1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$ OR (Weighted) average mass of all the isotopes $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ OR Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C-12 has a mass of 12	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If moles and atoms mixes Max = 1 This expression = 2 marks
5	(b)		d block [Ar] $3 d^{2} 4 s^{2}$ 27	1 1 1	Allow 3d/D Other numbers lose M1 Ignore transition metals Can be written in full Allow subscripts $3 d^{2}$ and $4 s^{2}$ can be in either order

\begin{tabular}{|c|c|c|c|c|c|}
\hline Question \& Part \& \[
\begin{aligned}
\& \hline \text { Sub } \\
\& \text { Part } \\
\& \hline
\end{aligned}
\] \& Marking Guidance \& Mark \& Comments \\
\hline \multirow[t]{7}{*}{6} \& \multirow[t]{7}{*}{} \& \multirow[t]{7}{*}{} \& \multirow[t]{7}{*}{\begin{tabular}{l}
 \\
trigonal / triangular bipyramid(al) \\
Bent / V shape / non-linear / triangular / angular
\[
104^{\circ}-106^{\circ}
\] \\
(For candidates who thought this was \(\mathrm{CIF}_{2}{ }^{+}\)which contained iodine allow \\
Trigonal / triangular planar \\
\(120^{\circ}\)
\end{tabular}} \& \multirow[t]{2}{*}{1

1} \& Mark M1 - M5 independently M1 for 5 bond pairs around As Do not penalise A for As or FI for F

\hline \& \& \& \& \& Allow trigonal dipyramid

\hline \& \& \& \& 1 \& | M3 for 2 bond pairs to F and 2 lone pairs |
| :--- |
| Lone pairs can be shown as lobes with or without electrons or as $x x$ or \qquad X |
| X |

\hline \& \& \& \& 1
1 \& Bent-linear = contradiction Do not allow trigonal

\hline \& \& \& \& \&

\hline \& \& \& \& \& Not just triangular

\hline \& \& \& \& \&

\hline
\end{tabular}

[^0]: Set and published by the Assessment and Qualifications Alliance.

