## ANSWERS & MARK SCHEMES

## **QUESTIONSHEET 1**

| (a) (i) | asexual involves only mitosis whereas sexual involves mitosis and meiosis; asexual does not introduce genetic variation whereas sexual does introduce genetic variation; sexual involves a fertilisation process whereas asexual does not/gametes versus no gametes; sexual may involve larva/embryos/pregnancy/seeds whereas asexual may involve binary fission/runners/ offsets/bulbs/stolons/any other examples;  max 3 |                                                                                                                                                                               | max 3    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (ii)    | Any two of:                                                                                                                                                                                                                                                                                                                                                                                                                | bulbs/corms/rhizomes/stolons/runners/tubers/any other valid example;;                                                                                                         | 2        |
| (iii)   | Any two of:                                                                                                                                                                                                                                                                                                                                                                                                                | budding in Hydra/Cnidaria/fragmentation in ribbon worms/strobilisation in tape worms;;                                                                                        | 2        |
| (b) (i) | the transfer o                                                                                                                                                                                                                                                                                                                                                                                                             | f pollen from the stamen/anther to the stigma;                                                                                                                                | 1        |
| (ii)    | (usually achie                                                                                                                                                                                                                                                                                                                                                                                                             | eved) by wind or insects;                                                                                                                                                     | 1        |
| (iii)   | allowing the                                                                                                                                                                                                                                                                                                                                                                                                               | re variation/introduces new genetic material;<br>possibility of evolutionary change;<br>on only mixes the same genes together (and so no new genetic material is introduced); | max 2    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               | TOTAL 11 |

# **QUESTIONSHEET 2**

| (a) (i) | anthers in A are inside the flower, in B they are exposed/outside flower; filaments in A hold anthers upright, in B filaments pendulous/ anthers hanging; anthers in A are small compared with those in B; 5 stamens visible in A/A has 10 stamens, B has only 3 stamens;                                                        | max 2      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (ii)    | A has many carpels, B has only two carpels;<br>small/simple stigmas in A but large feathery stigmas in B;<br>stigmas in A are inside flower but in B are exposed;                                                                                                                                                                | max 2      |
| (b) (i) | it can be cut along any vertical axis to give 'mirror image' halves; colour attracts (pollinating) insects equally from all directions; disperses scent equally in all directions; insects can land on it equally easily on all sides; anthers can dispense pollen onto insects/stigmas receive pollen from insects on any side; | 1<br>max 2 |
| (ii)    | wind pollination/anemophily;                                                                                                                                                                                                                                                                                                     | 1          |
| (iii)   | anthers hang out/shake in wind currents (to shed pollen);<br>large anthers produce an (enormous) lot of pollen;<br>pollen is very light/dusty/smooth to be carried in (wind currents);<br>feathery stigmas have a large surface area (to catch pollen);                                                                          | max 3      |

#### **ANSWERS & MARK SCHEMES**

### **QUESTIONSHEET 3**

| Feature                                                  | Asexual reproduction | Sexual reproduction |
|----------------------------------------------------------|----------------------|---------------------|
| Involves cell division by mitosis                        | ✓                    | <b>√</b> ;          |
| Involves cell division by meiosis                        | x                    | <b>√</b> ;          |
| Carried out by flowering plants and mammals              | х                    | <b>√</b> ;          |
| Genetic variation may be introduced by random assortment | x                    | <b>√</b> ;          |
| Genetic variation may be introduced by mutation          | 1                    | <b>√</b> ;          |
| May produce a cloned population                          | 1                    | <b>x</b> ;          |
| Always involves two individuals                          | x                    | <b>√</b> ;          |
| Usually produces sterile offspring                       | х                    | <b>X</b> ;          |
| Introduces hybrid vigour                                 |                      |                     |

TOTAL 9

### **QUESTIONSHEET 4**

(a) (i) the transfer of pollen from the anthers to the stigmas; of different plants of the same species;

2

(ii) one male nucleus (from the pollen) fuses with the egg cell nucleus (in the embryo sac) to produce a zygote; the other male nucleus fuses with the (primary) endosperm nucleus to produce a <u>triploid</u> endosperm nucleus;

2

(b) (i) flower A has 5 equal/similar petals enabling bee/insect to land equally well from any direction; flower B has petals differentiated into a standard petal, two wing petals and a keel petal; ref to standard petal for (bumble) bee/heavy insect to land on; ref to weight of insect depresses keel exposing stamens and stigma;

max 3

(ii) flower A has 10 stamens/anthers which must brush pollen onto bee/insect as it pushes by to reach nectary; flower B has 1 free stamen and 9 stamens fused by their filaments to make a tube/channel around the ovary; thus bee must push its (long) tongue into filament tube to reach nectar at base; this ensures it brushes against the anthers and stigma;

max 3

(iii) flower A has many carpals each with a short style and stigma to receive pollen from any direction; flower B has an ovary/fused carpals with one stigma and style; style hairy to brush pollen off anthers onto underside of bee (when keel depressed); bent style jerks upwards suddenly when keel depressed to hit underside of bee (to receive pollen from another plant);

nav 3

- (iv) flower A has radial symmetry/is actinomorphic;
  - this enables it to attract insects equally well from all directions/insects can land on it equally easily from any direction; flower B has bilateral symmetry/is zygomorphic;
  - can only be landed on from a specific direction/in a particular position to depress keel/ref need for a heavy long-tongued insect;  $\max 3$

## ANSWERS & MARK SCHEMES

# **QUESTIONSHEET 5**

| <ul> <li>(a) ref to tubers/stem tubers/swollen underground stems;</li> <li>contain starch/food reserves to enable growth of new plants from the tubers;</li> <li>ref to terminal/lateral buds on tubers from which new plants grow;</li> <li>by mitosis;</li> <li>one plant produces several tubers each of which can produce another plant;</li> <li>ref to overwintering under soil/perennation;</li> </ul> | max 4                    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| (b) ref to runners/horizontal stems; grow from axillary/lateral buds (of parent plant); where nodes/lateral buds on runner touch the ground; new growth occurs producing shoots and roots; by mitosis; one plant can produce several runners at a time thus increasing number of plants;                                                                                                                      | max 4                    |  |  |
| (c) ref to budding; by mitosis; buds grow from body wall and differentiate/develop tentacles/mouth/enteron; bud eventually splits/separates from parent at its base/foot and becomes an independent Hydra;                                                                                                                                                                                                    | max 3                    |  |  |
| <ul><li>(d) ref to binary fission;</li><li>nucleus divides by mitosis;</li><li>cytoplasm divides by constriction between new/daughter nuclei;</li></ul>                                                                                                                                                                                                                                                       |                          |  |  |
| each cell receives approximately the same amounts of stored food/organelles;                                                                                                                                                                                                                                                                                                                                  | max 3                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL 14                 |  |  |
| QUESTIONSHEET 6                                                                                                                                                                                                                                                                                                                                                                                               |                          |  |  |
| (a) (i) <u>anterior</u> pituitary; (ii) ovarian follicle <u>and</u> corpus luteum; (iii) corpus luteum;                                                                                                                                                                                                                                                                                                       | 1<br>1<br>1              |  |  |
| (b) hypothalamus secretes gonadotropin releasing factor/GnRF;                                                                                                                                                                                                                                                                                                                                                 |                          |  |  |
| which regulates secretion of FSH and LH by the pituitary; ref to feedback control; max 2                                                                                                                                                                                                                                                                                                                      |                          |  |  |
| (c) (i) increase in concentration during proliferative phase stimulates development of a primary follicle to become a mature ovarian follicle/ref phase of growth of oogenesis; stimulates oestrogen secretion by follicle;                                                                                                                                                                                   | (in the ovary);          |  |  |
| 'spike' of FSH secretion stimulates oogenesis/triggers LH secretion;                                                                                                                                                                                                                                                                                                                                          | max 3                    |  |  |
| <ul> <li>rise in oestrogen concentration during proliferative phase stimulates thickening of uterine wall/en development of glands/blood supply of endometrium;</li> <li>rise in oestrogen concentration eventually inhibits FSH secretion (by negative feedback);</li> <li>rise in oestrogen concentration also stimulates LH secretion (by positive feedback);</li> </ul>                                   | dometrium/               |  |  |
| rise in oestrogen concentration (thus also) stimulates ovulation;                                                                                                                                                                                                                                                                                                                                             | max 3                    |  |  |
| <ul> <li>(iii) 'spike' stimulates ovulation;</li> <li>high LH concentration in secretory phase stimulates development of corpus luteum (from remain stimulates corpus luteum to secrete progesterone/oestrogen and progesterone;</li> <li>fall in LH concentration (if there is no implantation) enables return to the menstrual phase;</li> </ul>                                                            | s of ruptured follicle); |  |  |
| (iv) increase in progesterone concentration maintains/causes further development of endometrium;                                                                                                                                                                                                                                                                                                              | шил Э                    |  |  |
| ref to increase in blood supply/glandular tissue;                                                                                                                                                                                                                                                                                                                                                             |                          |  |  |
| fall in progesterone concentration at $25 - 28$ days removes maintaining effect; thus uterine wall/endometrium breaks down/ref menstruation occurs;                                                                                                                                                                                                                                                           | max 3                    |  |  |

#### **ANSWERS & MARK SCHEMES**

## **QUESTIONSHEET 7**

### (a) false;

usually it produces genetically identical offspring/clones by mitosis;

but genetic variation can still be introduced by mutation;

(most likely) chromosome mutation/(auto)polyploidy;

due to failure of chromosomes to segregate during anaphase of mitosis/ref to restitution nucleus;

ref to gene mutation;

max 4

#### (b) false;

ferns have gametophytes and sporophytes;

sea anemones have polyps/hydroids alternating with medusae;

polyps are asexual, medusae are sexual;

max 3

#### (c) true;

an earthworm contains both male and female organs/testes and ovaries;

but these are in different segments of the body;

male openings and female genital openings cannot meet in the same worm/can only meet with another worm during pairing; ref male openings on segment 15/sperm sac receptacles on segment 9/female openings on segment 13; max 3

### (d) true;

they are hermaphrodite/segments/proglottids contain both testes and ovaries; usually only one tape worm is present in the gut/host;

thus must fertilise itself/ref proglottids may cross-fertilise;

max 3

TOTAL 13

## **QUESTIONSHEET 8**

seminiferous tubules; testis/testes; spermatogonia; mitosis/mitotic; <u>primary</u> spermatocytes; <u>secondary</u> spermatocytes; spermatids; meiosis/meiotic; Sertoli;

ovary; oogonia; yolk/food\*; cytoplasm\*; ovulation; <u>primary</u> oocyte; meiotic/meiosis; <u>secondary</u> oocyte; sperm; menopause;

<sup>\*</sup> these are interchangeable.

ANSWERS & MARK SCHEMES

# **QUESTIONSHEET 9**

| Hormones                            | Action                                                                                        |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Gibberellins in seeds               | Stimulates synthesis of enzymes/amylase/protease/lipase;                                      |  |
| Testosterone ;                      | Stimulates development of male secondary sexual characteristics                               |  |
| Oxytocin during birth               | Stimulates uterine contractions/dilation of the cervix;                                       |  |
| Prolactin ;                         | Regulates <u>production</u> of milk in mammary glands                                         |  |
| Gonadotropin releasing factor       | Regulates release of FSH/LH from (anterior) pituitary;                                        |  |
| Progesterone in the menstrual cycle | Maintains endometrium/causes further thickening of endometrium;                               |  |
| Progesterone in pregnancy           | Inhibits contractions of uterine smooth muscle (thus preventing miscarriage);                 |  |
| Oestrogen before puberty            | Stimulates development of female secondary sexual characteristics/breasts/wide hips/other eg; |  |
| Ethene in plants                    | Promotes ripening of fruits;                                                                  |  |
| Chorionic gonadotropin              | Maintains corpus luteum and progesterone secretion/takes over role of LH in early pregnancy;  |  |

#### **ANSWERS & MARK SCHEMES**

### **QUESTIONSHEET 10**

(a) so that offspring/seedlings do not compete with parent plants for water/salts/sunlight/do not overcrowd the area and so deplete its resources;

it will promote outbreeding since when seedlings mature in another area they can cross pollinate with genetically different stock; it increases the possibility of becoming established in new habitats/locations;

(b) (i) explosive/propulsive;

as pod wall dries it shrinks, thus building up tension;

suddenly snaps at margins forcibly ejecting seeds (for several metres);

max 2

(ii) wind;

fruit wall/pericarp extended into two wings/reference (double) samara;

to increase surface area for wind resistance;

max 2

(iii) censer mechanism/shaking;

seeds are shaken out through small holes;

ref very light seeds/long flexible fruit stem which easily bends in wind;

max 2

(iv) animal;

fleshy fruit contains much sugar/is sweet so eaten by animals;

seed enclosed in hard endocarp is thrown away/passes through gut into faeces (without digestion);

max 2

(v) animal;

hook catches in animal's fur and is carried away until dislodged;

hairs on fruit wall also aid attachment to animals:

max 2

(vi) wind;

fruit wall modified into a parachute/pappus of hairs;

increases surface area for better wind resistance;

max 2

(vii) water/ocean currents;

fibrous fruit wall makes it buoyant/float/traps air to make it buoyant;

hard/woody endocarp prevents sea water from damaging seed;

max 2

TOTAL 17

### **QUESTIONSHEET 11**

(a) select several hydroid organisms of similar size/age/number of feeding polyps;

but with no reproductive polyps/forming polyps;

must be attached to small stones/bits of seaweed;

place in tanks of well balanced/fresh seawater:

maintained over suitable temperature range/eg.5 – 30°C at 5°C intervals;

oxygenate the water (with diffuser pump);

agitate water/magnetic stirrer to simulate tidal action;

experiment should take several weeks;

observe periodically and record polyps development;

count number of feeding and reproductive polyps formed at different temperatures;

replications at each temperature;

max 7

(b) put some hydroid organisms with no forming polyps into cool water and some into warm water;

when polyps start to form transfer half of the organisms in cool water to warm water and half of the organisms in warm water to cool water;

observe after differentiation to assess whether differentiation differs in organisms which were in cold/warm water throughout and those which were transferred from cold to warm/warm to cold;

#### **ANSWERS & MARK SCHEMES**

## **QUESTIONSHEET 12**

(a) growing fetus/baby requires a lot of calcium for bone development/ossification; this is obtained from mother/mother's blood via placenta; calcium could be withdrawn from mother's bones/teeth to supply baby (if mother's intake is low);
3
(b) growing fetus needs plenty of iron for haemoglobin/red cell formation:

(b) growing fetus needs plenty of iron for haemoglobin/red cell formation; obtains iron from mother across placenta/ref transferrin/ferritin; iron could be drawn from mother's reserves if her intake is low; thus mother/fetus could become anaemic;

max 3

(c) fetal haemoglobin is different to adult/post-birth haemoglobin; adapted for gas exchange across placenta rather than from air; thus in new born babies the fetal haemoglobin is rapidly broken down and replaced with adult haemoglobin; the waste products/bilirubin may build up (causing jaundice) if liver cannot deal with them quickly enough;

max 3

(d) first milk is colostrum; contains many antibodies needed by the baby; giving baby passive immunity/immunity for first few weeks of life;

3

(e) chemicals in tobacco/alcohol can cross placental barrier into baby; may act as a teratogen/cause fetal defects/ref 'fetal alcohol'syndrome; baby may become addicted/suffer withdrawal symptoms; ref to reduced birth weight of babies from heavy smokers/alcohol drinkers;

max 3