MICROBIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

(a) (i)	A = cell wall; B = chromosome/nuclear mass;	2
(ii)	Any two of: free ribosomes/no endoplasmic reticulum/free DNA/no defined nucleus/no organelles/mitochondria/chloroplast/ Golgi body;;	2
(b) total = 40	of 12 doublings/reproductions;	2
(c) (i)	ribosomes needed to read mRNA/translate mRNA; unable to carry out protein synthesis;	2
(ii)	ribosomes have different structure/80s ribosomes do not bind to streptomycin;	1
		TOTAL 9
QUES	TIONSHEET 2	
(a) Any	two of: distinct nucleus/nuclear membrane/	
. , ,	smooth/ rough endoplasmic reticulum/ mitochondria/ Golgi body;;	2
<i>a</i> > 5 ·		4
	meter at A = 18 mm; (this may vary with photocopying/printing) $\frac{18}{5000}$; = 0.0036 mm or 3.6 μ m;	2
5	ξ_{000} ; = 0.0036 mm or 3.0 μ m;	3
	o 25° C growth rate becomes faster as rate of enzyme action increases;	
_	est growth rate at 25 °C due to optimum enzyme action; 0° C enzymes inhibited so growth rate slower.;	2
(d) filter	r medium containing fungus through paper/nitrocellulose of known (dry) mass;	
dry į	paper/nitrocellulose with fungus at 80-90° C / temperature which evaporates water without burning fungus; at drying and weighing until constant mass;	3
		TOTAL 10
QUES	TIONSHEET 3	
(a) A - l	ag.	
synt	hesising enzymes needed to use culture medium/rate of growth of population slower/ few cells dividing s growing but not dividing/microorganism acclimatising to new medium;	2
B - 1 expo	og; onential growth/ numbers double every generation/ logarithmic growth/no limiting factors/qualified optimum co	onditions; 2
(b) (i)	(longer lag phase) suggests needs additional/different enzymes/sucrose has to be broken down before it ca/sucrose takes longer to absorb;	n be used
(ii)	suggests energy used to obtain energy from sucrose/less carbon available from sucrose than from glucose/cannot breakdown sucrose effeciently;	1
(c) micr	roorganism unable to synthesise the correct enzyme to hydrolyse cellulose;	1
		TOTAL 7
		IUIAL /

MICROBIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 4

(a) (i)	A= RNA; B= protein;	2
(ii)	TMV has a simple protein coat/capsid but HIV has complex coats of proteins, lipids/glycoproteins; HIV contains reverse transcriptase but TMV does not;	2
(b) (i)	loss of chlorophyll/chloroplasts reduces photosynthesis; loss of leaves/reduced leaf surface area reduces photosynthesis/harvestable leaves; less photosynthesis results in less growth/smaller plants/stunted growth;	3
(ii)	kills virus/destroys infected tissue preventing spread of disease;	1
		TOTAL 8
QUES	STIONSHEET 5	
	eells in grid;(allow range 72 to 74)	
	ume of grid = $0.2 \times 0.2 \times 0.1 \text{ mm}^3 = 0.004 \text{ mm}^3$; s in lmm ³ = $73 / 0.004 = 18250$;	3
	$250 \times 1000 \times 10^5 = 1.825 \times 10^{12} \text{ cells dm}^{-3}$;	1
(D) 18 2	1	
(c) A = enzy	2	
	population doubling at each generation/exponential growth; imiting factors/nutrient/temperature optimum;	2
	reproduction rate equals death rate; ting factors appear, such as nutrient supply/accumulation of toxins;	2
		TOTAL 10
QUES	STIONSHEET 6	
(a) (i)	tetracycline kills species X/bacteriocidal;	
	effect noticable at 4 hours; tetracycline has little or no effect on species Y;	3
(ii)	rifamycin has little effect on species X;	
	little difference from 'without antibiotic' population; rifamycin increases rate of population growth of species Y;	3
(b) (i)	lcm³/known volume of culture, added to 9 cm³/saline/diluent/broth;	
	repeat using lcm³/of first dilution into 9 cm³ of saline/diluent/broth; repeat using same volumes until have a number of dilutions;	3
		S
(ii)	3rd dilution has too many cells so prone to errors in counting; 5th dilution has too few so sampling error too great;	2
		TOTAL 11
		IOIAL II

MICROBIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 7

(a) sigmoid/S-shap	ped;
growth slow in	itially;

exponential growth when no limiting factor;

growth slows as glucose used up/toxic waste accumulates;

4

(b) glucose easier to metabolise/enzymes for glucose metabolism already present; takes time for E coli to metabolise lactose since it must first synthesise lactase;

2

(c) in presence of lactose bacterial gene for making lactase is switched on; lactase hydrolyses lactose to glucose and galactose; galactose can be isomerised to glucose; glucose is used in respiration/glycolysis;

TOTAL 10

QUESTIONSHEET 8

(a) 1. bacterium a coccus - go to 3

2. bacterium a rod - go to 9

key is a true dichotomy;

key works to separate all species;

use of shape;

3. coccus pigmented - go to 5

4. coccus not pigmented - go to 7

use of pigmentation; use of flagella;

5. coccus flagellated = Species B

6. coccus not flaellated = Species A

7. coccus flagellated = Species E

8. coccus not flagellated = Species G

9. rod pigmented = Species F

10. rod not pigmented - go to 11

11. rod flagellated = Species D

12. rod not flagellated = Species C

5

(b) (i) flood slide with crystal violet stain;

wash smear with Gram's Iodine (to fix the stain);

decolourise wih alcohol/propanone;

counterstain with carbol fuchsin/safranin;

4

(ii) crystal violet is retained inside Gr+ cells but washes out of Gr- cells;

because outer wall of Gr+ cells is thick/20 - 80 nm thick compared to Gr- wall which is thin/2 - 3 nm thick;

2

2

(iii) Gr+: Staphylococcus/Lactobacillus;

Gr-: E. coli/Pseudomonas:

TOTAL 13

MICROBIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 9

(a) protein spikes are antigenic/ligands;

protein spikes/ligands on the outer coat only bind specifically to receptors on cells of host; different species have different receptors;

2

(b) immunity is short lived/vaccinations are only effective against one strain; virus mutates frequently and body does not recognise the new antigens;

2

(c) pandemic spreads world wide, epidemic is more localised/only in one country; mutation may cause small changes/antigenic <u>drift</u> resulting in epidemics; or may cause major change/antigenic <u>shift</u> resulting in pandemics; with antigenic shift few people have immunity while with antigenic drift most people have some immunity;

max 3

TOTAL 7

QUESTIONSHEET 10

(a) (i)

Microorganism	Feature			
	Nucleus	Mitochondria	Ribosomes	Cell wall
Amoeba	✓	✓	✓	X ;
Fungi	✓	✓	✓	✓ ;
Bacteria	х	х	✓	✓ ;
Viruses	x	х	х	x ;

4

(ii) nucleic acid/DNA/RNA; protein;

2

(b) extracellular digestion;

enzymes secreted into surrounding medium;

ref amylases/proteases/lipases;

large/insoluble molecules hydrolysed/broken down to small/soluble molecules;

small/soluble molecules pass into fungus/hyphae/mycelium by diffusion/active transport;

max 4

TOTAL 10

QUESTIONSHEET 11

(a) virus DNA codes for the production of proteins/enzymes;

uses host cell ribosomes to do this;

enzymes destroy the host DNA;

new virus DNA synthesised;

new virus coat/capsid proteins synthesised;

(new) viruses/virions assemble in host cells;

host cell bursts open to release viruses;

(these) infect new/susceptible cells/ref receptor recognition/invasion mechanism;

max 6

(b) (i) virus DNA becomes attached to the host DNA:

1

(ii) at cell division DNA is replicated;

virus DNA is copied along with host cell DNA;

ref DNA polymerase acts on both host cell and viral DNA;

carried by a chromosome/chromatid into new/daughter cell nuclei;

max 3

TOTAL 10

MICROBIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 12

(a) (i)	A = vacuole; $B = nucleus;$ $C = chloroplasts/plastids;$	3	
(ii)	alga cell wall is cellulose, bacterial wall is peptidoglycan/murein/different polymer;		
(b) (i)	protein obtained by collecting and drying whole cells;		
(ii)	ready made supply of nutrients (in sewage treatment tank); thus algae will grow faster/larger;		
	reduces environmental pollution in water; excess minerals/salts in water can cause eutrophication;		
	cheap source of protein; can provide food for people/animals; (any two pairs of marks)	max 4	
(iii)	too little light/too cold (for much of the year);	1	
		TOTAL 10	

QUESTIONSHEET 13

((a)	any	p.	lasmids	rep.	licate;
---	-----	-----	----	---------	------	---------

DNA replicates;

one (circular) DNA molecule at each end of the cell; new cell wall laid down between DNA (molecules);

cytoplasm divided between each new cell; max 4

(b) use chemical compounds/named compound/chemoautotrophs;

bond energy used to synthesise organic molecules from inorganic molecules;

2

use light energy/photoautotrophs;

convert light energy into chemical bond energy in synthesis of organic molecules from inorganic molecules;

2

secrete extracellular enzymes to digest organic molecules/saprotrophs; absorb soluble organic molecules;

TOTAL 10

2