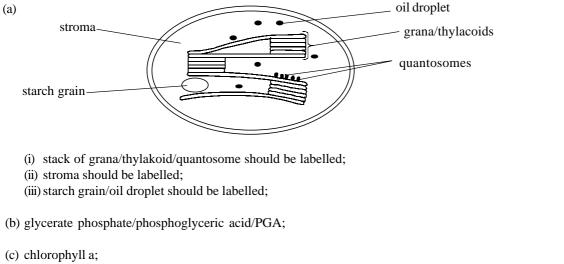
ANSWERS & MARK SCHEMES

QUESTIONSHEET 1


 (a) A - vascular bundle; B - palisade mesophyll; C - spongy mesophyll; 	3
(b) B/palisade mesophyll;	1
(c) (i) $1 = \underline{\text{double}}$ membrane/envelope; $2 = \text{granum}$; $3 = \text{quantosomes}$; 4 = stroma; $5 = lipid droplet$; $6 = starch grain$;	6
(ii) 1. dark/Calvin/light independent reaction;2. light/Hill/light dependent reaction;	2
	TOTAL 12

QUESTIONSHEET 2

(a) light intensity; (b) Y - some other factor is limiting reaction; Z - light intensity is no longer limiting the reaction; probably carbon dioxide concentation is now limiting; (c) Correct arrangement of beaker, funnel and test tube; plant in correct position with end in stem of funnel; water and oxygen bubbles correctly shown; 3

TOTAL 7

QUESTIONSHEET 3

(\mathbf{C})	chiorophyn a,
	chlorophyll b;
	carotene;
	phaeophytin/xanthophyll;

1

1

1

1

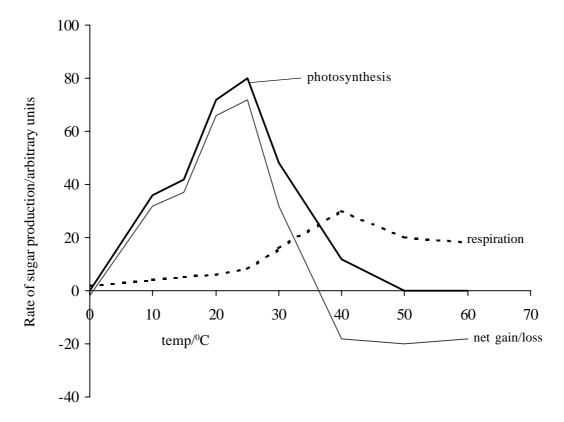
ANSWERS & MARK SCHEMES

QUESTIONSHEET 4

(a) $A = 15 \text{ mmol CO}_2 \text{ m}^{-2} \text{ sec}^{-1}$; (allow 15.1) $B = 25 \text{ mmol CO}_2 \text{ m}^{-2} \text{ sec}^{-1}$; (allow only 1 mark if no units)	2
(b) B; because it photosynthesises faster than A up to 20 °C/photosynthetic rate decreases/ lower than A after 20°C;	2
(c) because the enzymes are denatured/description of denaturation;(No mark for saying "killed".)	1
(d) Any two of: light intensity/carbon dioxide tension/lack of water;; (not just 'light/CO ₂ /water')	2
TO	OTAL 7

QUESTIONSHEET 5

 (a) correct labelled axes (distance on X-axis); suitable scale (at least half the graph paper); accurate plotting; 	
points joined with a ruler (according to IOB instructions for A-Level Biology); curves labelled;	5
 (b) (i) from 2 to 0.5m, the rate of photosynthesis increases; after this increasing the light intensity has no effect on the photosynthetic rate; CO₂ tension probably limiting; 	3
(ii) lower rate of photosynthesis overall in A;	
limiting effect in A starts at lower light intensity;	
lower rate of photosynthesis in A when CO_2 is limiting;	3
(c) $I_{A} = \frac{1}{0.75^{2}}$; = 1.778; (accept 1.78) $I_{B} = \frac{1}{0.50^{2}}$; = 4.0;	4
	TOTAL 15


(a) A - carbon dioxide; B - ADP;	
C - NADP; (B and C could be the other way round)	3
(b) stroma;	1
(c) can be used to regenerate RuBP;	1
(d) from the quantosomes/thylacoid membranes; products of light dependent reaction/ <u>photo</u> phosphorylation;	2
 (e) polymerisation/condensation/removal of water; joining glucose molecules by alpha-glycosidic links; 	2
	TOTAL 9

ANSWERS & MARK SCHEMES

QUESTIONSHEET 7

(a) (i)	Temp ⁰ C	Net loss/gain
	0	-2
	10	32
	15	37
	20	66
	25	72
	30	32
	40	-18
	50	-20
	60	-18 ;

(2 marks if all correct, penalty of 1 mark per error)

(ii) axes labelled (temp. as X axis); suitable scale; accuracy of plotting; points joined with a ruler; curves labelled; 5

(b) (i) (ii)	25°C; 40°C;	2
(c) (i)	the light intensity; at which the rates of photosynthesis and respiration are the same;	2
(ii)	36.5°C; (accept 36.0 to 37.0)	1

TOTAL 12

2

ANSWERS & MARK SCHEMES

QUESTIONSHEET 8

 (a) oxygen is an inhibitor of photosynthesis at higher concentrations; little or no inhibition at atmospheric concentrations; oxygen is a competitive inhibitor of RuBP carboxylase; 	3
 (b) atmospheric levels of carbon dioxide are sub-optimal for photosynthesis; rates of photosynthesis can be increased by increasing atmospheric concentration of carbon dioxide; especially at high light intensity; reference to principle of limiting factors; 	4
(c) (i) the light intensity; at which the rates of photosynthesis and respiration are equal/no net gain or loss in weight;	2
(ii) photosynthesis exceeds respiration;thus plant gains sugar for storage;	2
(iii) dim light in wood; thus compensation point occurs at a low light intensity so plant starts to accumulate sugar sooner;	2
	TOTAL 13

QUESTIONSHEET 9

 (a) (i) absorption spectrum shows amount of light absorbed (by photosynthetic pigments) at different wavelengths; action spectrum shows rate of photosynthesis at different wavelengths; both have similar profiles/peaks in red and blue; 	3
 (ii) cyclic involves photosystem 1 and non-cyclic involves both photosystems 1 and 2; cyclic generates ATP and non-cyclic generates ATP and NADPH; non-cyclic is coupled to photolysis of water but cyclic is independent of this; 	3
(iii) C_3 plants produce glyceraldehyde 3 phosphate (3C) from ribulose bisphosphate and CO_2 ; C_4 plants produce malic acid (4C) from phospho-enol pyruvic acid and CO_2 ; C_4 plants more efficient in high O_2 tensions;	3
(b) (i) magnesium ions are a component of chlorophyll; bound onto porphyrin ring of chlorophyll;	2
(ii) large subunits on thylacoids house photosystem II;small subunits on thylacoids house photosystem I;	2
ТО	TAL 13

(a) (i) to ensure no starch is present in the plant at the beginning of the experiment; as this is what is being tested for;	2
(ii) starch is broken down to sucrose/glucose; and used for respiration/transported to roots/storage organ;	2
 (b) dip leaf in boiling water to kill cells; place in boiling alcohol to remove chlorophyll; wash in hot water to soften; spread on a white tile and flood with iodine in potassium iodide; blue/black indicates presence of starch; 	5
 (c) A is completely blue black, B is only blue black where there was no cover; covered part of B remains iodine colour; thus starch only made in areas exposed to light; 	3

ANSWERS & MARK SCHEMES

QUESTIONSHEET 11

(a) X- chloroplast;	
Y-mitochondrion;	
A- oxygen;	
B- carbon dioxide;	4
(b) oxidative phosphorylation uses energy from oxidation;	
of reduced coenzymes/NADH;	
to produce ATP;	
photophosphorylation involves using light energy;	
to produce ATP;	
and reduced NADP/NADPH;	6
(c) (i) ATP used as energy supply for CO ₂ fixation in the dark/Calvin reaction;	
NADPH used as reducing power when CO_2 is converted to carbohydrate in dark/Calvin reaction;	2
(ii) ATP is needed for many synthetic chemical reactions;	
and processes such as active transport;	2
	TOTAL 14
	TOTAL 14

QUESTIONSHEET 12

(a) carotene; red; blue; electron carriers; ATP; stroma; hydrogen; water; NADPH; Calvin; phosphoglyceric; ribulose bisphosphate; hydroxide; oxygen;	14
 (b) water absorbed by roots is a reactant/supplies electrons/H; for uptake/transport of minerals/needed for turgidity; 	2
ΤΟΤΑ	L 16

 (a) more light at top of tree than at bottom which is shaded; thus more chloroplasts needed at top and so more palisade cells/fewer chloroplasts needed in shade /comment on adaptation to microclimates; possibly lower leaves cannot make enough food to enable growth of extra cells/lower leaves have less nutrition; 	3
 (b) peas and beans contain Rhizobium/root nodules for nitrogen fixation; thus can make more protein; 	2
 (c) waste carbon dioxide produced by power station is bubbled through lake; assimilated by Chlorella for growth and reproduction; Chlorella is harvested for use as cattle food/reduces CO₂ emission and greenhouse effect; 	3
	TOTAL 8

ANSWERS & MARK SCHEMES

QUESTIONSHEET 14

(a) (i) stomatal width increases as concentration of starch decreases;	1
(ii) stomatal width decreases as concentration of starch increases;	1
 (b) (i) light stimulates conversion of starch to sugars; therefore as light intensity increases, starch decreases; sugars reduce water potential of guard cells; water enters osmotically; 	
as guard cells swell, stomatal pore opens; ref uneven thickening of guard cell walls;	max 4
(ii) closed/reduced aperture;	
deficit of water means guard cells cannot absorb any and so cannot swell;	2
(c) peel off epidermis/make a varnish imprint; use low power light microscope and eyepiece micrometer;	
count number of stomata in a square mm;	3
	TOTAL 11

QUESTIONSHEET 15

(a) most bacteria in red light and blue light/400-450 nm and 650-700 nm/few in yellow-green areas/equivalent;	1
(b) bacteria congregate where oxygen concentration is greatest;oxygen released in photosynthesis;these are the most effective (wavelengths) in photosynthesis;	3
 (c) each pigment absorbs different wavelengths/parts of visible spectrum/has different absorption maxima; accessory pigments/carotene/xanthophyll become excited/energised; and pass excited electrons onto chlorophylls; therefore leaves/plants are able to absorb more/a lot of light; 	max 3
	TOTAL 7

 (a) compensation point; light intensity at which CO₂ uptake = CO₂ output/rate of photosynthesis equals rate of respiration; plant can only gain mass/grow when X is exceeded; 	max 2
 (b) increasing light intensity stimulates light dependent stage/stimulates cyclic/non-cyclic photophosphorylation; some other factor becoming limiting/slowing rate of reaction; such as carbon dioxide concentration; 	max 2
(c) (i) oxygen; NADPH; ATP;	3
 (ii) ATP provides energy for conversion of PGA to TP; NADPH provides hydrogen/H atoms/reducing power for conversion of PGA to TP; 	2
	TOTAL 9

ANSWERS & MARK SCHEMES

QUESTIONSHEET 17

(a) $\frac{190 + 180 + 185}{3}$; = 185 mg CO ₂ 6hr ⁻¹ ;	2
 (b) Y; CO₂ absorbed in light; plus CO₂ released in respiration (in light); (Reject respiration in dark -it is not photosynthesising in the dark) 	3
(c) $\frac{180}{200}$ x 100; = 90%;	2
(d) Chlorella absorbs CO ₂ to make biomass; this can be sold as cattle fodder/food/fertiliser;	-
Chlorella absorbs CO_2 and so reduces greenhouse effect; reduces global warming/eq.;	4
	TOTAL 11

QUESTIONSHEET 18

(a)	(i)	amino acid/protein/DNA/RNA/nucleotide synthesis;	1
	(ii)	carries energy in form of ATP/ref. to photophosphorylation;	1
	(iii)	component of chlorophyll molecules/component of middle lamella (of cell wall);	1
(b)		r which limits/restricts the rate of a process/named metabolic process; actor which is closest to its minimum value;	2
(c)	(i)	higher phosphate increases yield;	1
	(ii)	60 (59-61) kg ha ⁻¹ ;	1
(d)		leaching out into water contributing to eutrophication/blue baby syndrome/may increase risk of stomach cancer if converted to nitrosamines;	1

TOTAL 8

ANSWERS & MARK SCHEMES

QUESTIONSHEET 19

 (a) cut up leaves and macerate/grind up; suitable solvent/acetone/acetone ether mixture; micropipette on to paper repeatedly; allow to dry each time/use of hair dryer; 	4
 (b) Any two of: use pencil line, not ink/pen/ do not allow solvent to touch line/ seal/allow time to achieve saturated atmosphere in tube/ do not allow paper to touch sides/avoid contamination by substances on fingers/ keep cold/in dark;; 	2
(c) different pigments absorb different wavelengths/parts of visible spectrum; greater amount of light absorbed/faster photosynthesis;	2 TOTAL 8

(a) ensure pigment spot is above solvent/ensure atmosphere in container was saturated with solvent before running;	1
 (b) solutes/pigments dissolve in solvent; solvent moves up paper; distance moved by solutes/pigments depends on their relative solubility/molecular size; 	2
 (c) (i) relative flow (Rf) is a physical constant; for a specific solute in a specific solvent; it is the distance moved by the solute divided by the distance moved by the solvent (front); 	max 2
(ii) $B = \frac{35}{93} = 0.38$; (0.376) $C = \frac{36}{93} = 0.39$; (0.387)	2
(ii) 2-way chromatography/run with a different solvent;	1
1	TOTAL 8