PMT

GCE BIOLOGY BY5

Question	Marking details	
1. (a)	A	1
(b)	I	1
(c)	H/C	1
(d)	F	1
(e)	G	1
		Our offers to tall 5

Question			Marking dataila	
Qu	estion	1	Marking details	
2.	2. (a)		The transfer of pollen from the anther to the stigma.	1
	(b)	(i)	Embryo sac.	1
		(ii)	Through stigma, style, ovary wall, micropyle.	1
			(Must travel through ovary wall to bottom before going into	
			micropyle)	
	(c)	(i)	Oviduct / fallopian tube;	
		(ii)	• (Acrosome / Y) contains enzymes; Not Y is an enzyme	2
			 which {<u>hydrolyse / dissolve / breakdown / digest / softens</u>} 	
			the {zona pellucida / jellycoat};	
	(d)		• Formation / growth of tube;	2
			 <u>nucleus</u> travels along a {<u>tube / channel / pathway</u>} (into the 	
			egg / ovule);	
			 enzymes are produced which (allow a tube to grow / which 	
			digests a path};	
			• both are chemotropic;	
			 membranes burst to release male gametes; 	

8

PMT

Question			Mauliu a dataila	
			Marking details	Available
3.	(a)		1. Smooth, coloured;	2
			2. Wrinkled, colourless; Accept non- coloured;	
	(b)		Linked / on same chromosome / (genes) are inherited together; NOT sex linked;	1
	(c)	(i)	Smooth, colourless AND wrinkled, coloured;	1
		(ii)	Crossing over / exchange of alleles; Not independent assortment / recombinants / chiasmata alone.	1
	(d)		F1 SsCc F2 Sscc or SScc or ssCc or ssCC	1 1

PMT

Question Marking details

Marks

Available

4.

6

Part	Correct	Ignore	Reject
(a)	4 and 5	3	1,2
(b)	2		1,3,4,5
(c)	1 and 3	5	2,4
(d)	1 and 3	5	2,4
(e)	2		1,3,4,5
(f)	3	5	1,2,4

Question 5. (a) (i) (ii)			Marking details Inserting a {normal / correct} {gene / DNA sequence} / <u>Replacing</u> {defective / faulty} genes with {copies of a new DNA sequence / normal allele / normal gene} / (owtte); Somatic cell therapy Germ line therapy	Marks Available 1
		\"/	1 and 42 and 3(Must have both for 1 mark)	L
	(b)	(i)	 CFTR is a {Channel protein / carrier protein / ion pump}; Not active transport alone Blocks {transport / movement} of chloride ions out of cells (into mucus) / ORA; Water retained in cell / water prevented from leaving / no osmosis; Unable to remove mucus in lungs; {Infection/ more susceptible to disease} / coughing {more likely / increased}; {Narrowing / blocking} of air passages (so reduced air flow); {Increased diffusion distance / reduced surface area} for gas exchange / insufficient oxygen received / not enough oxygen absorbed; 	4 Max 2 for symptoms only
		(ii)	 (Modified / normal / correct) genes are inserted; into liposomes / virus (as vector); Liposomes fuse with cell membrane / virus infects cell / ref to endocytosis; (Modified) gene passes through membranes / into cell; Applied by aerosol / spray / inhaler; (Any 3 points) 	3

Question		Marking details	
(c) (i)		Each new DNA molecule consists of one {original / parent / old /	Available
		template} strand and one new strand of DNA;	
	(ii)	 To (break bonds between DNA strands or bases to) <u>separate</u> original DNA into two single strands; 	1
		 II Triggers / Allows {primers / short pieces of RNA / single-strand DNA / free nucleotides} to {bind / attach / join} (to single stranded DNA); 	1
		III TAQ / DNA polymerase {makes nucleotides join / makes a strand of DNA / catalyses the synthesis of a complementary strand};	1
	(iii)	 (Percentage) risk is too high (for <i>human</i> application) / Incorrect base sequence; Incorrect mRNA; Different tRNA / brings incorrect amino acid; Structure of protein synthesised unknown / folding of protein is different / sequence of amino acid altered; Protein {non-functional / function altered} / chloride ions not transported / thick mucus still produced / gene therapy not effective; 	3
		(Any 3 points)	

Question		h	Marking details	Marks
qu		•		Available
6.	(a)		RNA polymerase;	1
	(b)	(i)	CGT TAC CAA;	1
		(ii)	CGU UAC CAA;	1
	(c)	(i)	Alanine;	1
		(ii)	 Mutation 1 – no change to sequence of amino acids; 	2
			Codon for alanine / degenerate codon / same amino acid	
			coded for;	
			Neutral mutation;	
			• Mutation 2 – valine replaced by alanine / codon for alanine;	2
			 (Tertiary) {structure / shape of protein} may change / 	
			position of bonds may change / sequence of amino acids	
			changing / structure of protein changing /	
			protein non functional;	
	(d)		Translation prevented;	3
			Tetracycline {binds to / blocks / inhibits} {mRNA triplet / codon	
			/ CGC / second attachment site};	
			• {Anticodon / tRNA triplet} cannot pair with {mRNA triplet /	
			codon} / cannot form codon-anticodon complex;	
			Amino acid not added to polypeptide chain /	
			peptide bonds not formed;	
			(Any 3 points)	
			Question total	11

Question			Marking details	
7.	(a)	(i)	C and D;	
		(ii)	Fragments 64 and 36 (kb);	1
	(b)	(i)	1, 2, 3 & 6 AND 1 and 3;	1
		(ii)	 Colonies {1, 2, 3 & 6 / shown / present} have taken up {plasmid 	2
			/ ampicillin resistant gene};	
			Reject taken up human gene;	
			Ignore recombinant plasmid;	
			Because they are resistant to ampicillin /	
			able to grow on ampicillin;	
			 4 and 5 have not taken up the {plasmid / 	
			ampicillin resistant gene};	
			 And so are not resistant to ampicillin; 	
		(iii)	 Colonies 1 and 3 do not have the gene / recombinant plasmid; 	3
			As they (remain) resistant to tetracycline / gene for tetracycline	
			resistance has not been {disrupted / destroyed};	
			 Colonies 2 and 6 do have the gene / recombinant plasmid; 	
			 Tetracycline resistance destroyed / prevents gene from being 	
			expressed;	

Question			Marking details	Marks
				Available
8.	(a)	(i)	Change in structure in a <u>community</u> over time;	2
			 Change in {composition of species / species present} 	
			(in a community) over time;	
			• Either due to change in environmental / (named) abiotic factors;	
		(ii)	A stable community which {undergoes no further change /	1
			reached equilibrium} / no further succession;	
	(b)		(Increased) interspecific competition / other plant species	2
			compete with heather /	
			heather outcompetes other plant species;	
			• For light / nutrients / minerals / named nutrient /	
			water (linked to competition);	
			Reject resources unqualified.	
	(c)		More energy used in respiration;	3
			 Higher respiration relative to {photosynthesis / GPP} / 	
			NPP decreases;	
			 {Fewer leaves / less surface area} for photosynthesis; 	
			 Less energy / glucose to {produce new biomass / for growth / 	
			synthesis of protein or named compound};	
			(Heather increases in size / ages / more competition from other	
			species) soil fertility decreases / less minerals or nutrients	
			available / greater competition for named resources;	
			Growth rate decreases / fewer leaves produced;	
			(As heather increases in size) less light penetrates the centre of	
			the plant;	
			 Loss of central leaves, (therefore woody parts increase); 	
			(Any 3 points)	
			Question total	8

Que	estion	Mark	ing details	Marks Available
9	(a)	А	Extinction is the loss of species;	1
		В	Conservation is the <u>planned</u> preservation of wildlife /	1
			the {enhancement / maintenance} of biodiversity;	
		С	To ensure the survival of the species;	1
		D	Conservation of existing gene pools;	1
		Е	To conserve potentially useful {genes / genetic sources}	1
			(for future generations);	
		F	Qualification / Example of E – resistance to disease or other;	1
		G	Use of plants / animals as a gene bank to cross with highly	1
			cultivated varieties;	
		Н	Conservation of plants with medicinal properties;	1
		I	(Planned) preservation of habitat, with example – wetlands,	1
			coral reef, sand dune;	
		J	Seed / sperm banks;	1
		К	Re-introduction programmes, e.g. Red Kite;	1
		L	Protection / breeding of endangered species in specialised	1
			zoos / captive breeding programmes / rare breeds;	
		Μ	Trade restrictions on endangered species /	1
			reference to CITES / ivory / whaling;	
		Ν	Relevant reference to NGOs {e.g. WWFN / government	1
			agency / CCW / SSSI / National Parks / nature reserves} /	
			ecotourism / education;	
		0	Correct reference to relevant legislation e.g. to prevent over-	1
			grazing / over-fishing / hunting / poaching in context /	
			collecting birds eggs / picking wild flowers / collecting plants;	

Qu	estion	Marl	king details	Marks Available
9	(b)	А	(Embryo cloning) {in vitro fertilised egg / zygote} divides to form	1
			{a ball of cells / embryo} / undergoes mitosis;	
		В	Embryo is split into separate cells;	1
		С	Before differentiation / 8 cell stage;	1
		D	(Nuclear transplant) nucleus / DNA may be removed from	1
			diploid / somatic / udder;	
		Е	(Nuclear transplant) nucleus / DNA may be removed from egg /	1
			ovum / secondary oocyte;	
		F	Introduce nucleus to donor egg / Donor and recipient cells are	1
			fused together;	
		G	The embryo is allowed to develop in a surrogate;	1
		Н	Animal born is genetically identical to the original donor;	1
		I	Reference to totipotent / cells are able to differentiate into more	1
			than one cell type / form a whole organism;	
		J	Example of tissue that contains stem cells – bone marrow,	1
			testes, embryonic stem cells;	
		К	Human stem cells could be used to {grow into required organ	1
			or tissue / therapeutic uses (treat range of diseases) /	
			or named example;	
		L	Less likelihood of rejection / no need for immunosuppressant	1
			drugs	
			(Any 8 from 13)	
		М	Embryos have to be destroyed to provide the stem cells/ Pro-	1
			life issues -embryos have the potential for independent life	
			(in the future);	
		Ν	Unknown long term side effects of stem cells;	
		0	Genetic modification of humans for non-medical reasons /	1
			eugenics issues related to selection of embryos;	
			(Any 2 from 13)	

GCE Biology-Human Biology MS - Summer 2012